9.4 Derivatives of Vector-Valued Functions Calculus Name: CA #2							
	If f is a vector-valued function defined by $f(t) = \langle te^t, e^{3t} \rangle$, then $f''(t) =$	2.	At time $t, 0 \le t \le 2\pi$, the position of a particle moving along a path in the <i>xy</i> -plane is given by the vector-valued function, $f(t) = \langle e^{3t} \sin t, e^{3t} \cos t \rangle$. Find the slope of the path of the particle at time $t = \frac{\pi}{2}$.				
3.	The position of a particle moving in the <i>xy</i> -plane is defined by the vector-valued function, $f(t) = \langle t^2 - t - 1, \frac{2}{3}t^3 - \frac{1}{2}t^2 + 4 \rangle$. For what value of <i>t</i> is the particle at rest?	4.	The vector-valued function f is defined by $f(t) = \langle 2te^t, e^t \rangle$. Find $f'(3)$.				
5.	If <i>h</i> is the vector-valued function defined by $h(t) =$	(3 cc	as $2t$, $8\sin\frac{t}{2}$, then $h'(t) =$				

$\langle \frac{1}{2} \cos \theta, t \sin 2\theta \rangle$, $\delta = 0$	4. (86 ³ ,e ³)	$3. t = \frac{1}{2}$	$5^{-1} - \frac{3}{1}$	1. $\langle 2e^t + te^t, 9e^{3t} \rangle$				
Answers to 9.4 CA #2								