### 9.4 Derivatives of Vector-Valued Functions

1. If $f$ is a vector-valued function defined by $f(t)=\left\langle t e^{t}, e^{3 t}\right\rangle$, then $f^{\prime \prime}(t)=$
2. The position of a particle moving in the $x y$-plane is defined by the vector-valued function,
$f(t)=\left\langle t^{2}-t-1, \frac{2}{3} t^{3}-\frac{1}{2} t^{2}+4\right\rangle$. For what value of $t$ is the particle at rest?
3. At time $t, 0 \leq t \leq 2 \pi$, the position of a particle moving along a path in the $x y$-plane is given by the vector-valued function, $f(t)=\left\langle e^{3 t} \sin t\right.$, $\left.e^{3 t} \cos t\right\rangle$. Find the slope of the path of the particle at time $t=\frac{\pi}{2}$.
4. The vector-valued function $f$ is defined by $f(t)=\left\langle 2 t e^{t}, e^{t}\right\rangle$. Find $f^{\prime}(3)$.
5. If $h$ is the vector-valued function defined by $h(t)=\left\langle 3 \cos 2 t, 8 \sin \frac{t}{2}\right\rangle$, then $h^{\prime}(t)=$

|  |  | $\frac{2}{\mathrm{I}}=7 \cdot \varepsilon$ | $\frac{\varepsilon}{\mathrm{I}}-\quad \tau$ | $\left\langle{ }_{78}{ }^{26}{ }^{\prime} 27+{ }_{7} 27\right\rangle$ |
| :---: | :---: | :---: | :---: | :---: |

