9.4 Derivatives of Vector-Valued Functions

Vector basics:

- Vectors have magnitude (length) and direction.
- Vectors can be represented by directed line segments.
- Vectors are equal if they have the same direction and magnitude.
- Magnitude is designated by $\|v\|$
- Vectors have a horizontal and vertical component.
- Component form of a vector is $\langle x, y\rangle$

1. Find the component form and magnitude of the vector that has an initial point of $(1,2)$ and terminal point $(5,4)$.

Component form:
Magnitude:
Vector-Valued Functions: $r(t)=\langle f(t), g(t)\rangle$ where $f(t)$ and $g(t)$ are the component functions with the parameter t.

Differentiation of Vector-Valued Functions

If $r(t)=\langle f(t), g(t)\rangle$ then

Properties of the derivative for vector-valued functions

$$
\begin{array}{ll}
\frac{d}{d t}[c \cdot r(t)]=c \cdot r^{\prime}(t) & \frac{d}{d t}[r(t) \cdot s(t)]=r^{\prime}(t) s(t)+r(t) s^{\prime}(t) \\
\frac{d}{d t}[r(t) \pm s(t)]=r^{\prime}(t) \pm s^{\prime}(t) & \frac{d}{d t}[r(s(t))]=r^{\prime}(s(t)) \cdot s^{\prime}(t)
\end{array}
$$

1. $r(t)=\left\langle 2 t^{2}+4 t+1,3 t^{3}-4 t\right\rangle$ then $r^{\prime}(t)=$
2. $r(t)=\left\langle t^{3}+5,2 t\right\rangle$ find $\frac{d}{d t} r(2 t)$
3. The path of a particle moving along a path in the $x y$-plane is given by the vector-valued function, $f(t)=\left\langle t^{2}, \sin t\right\rangle$. Find the slope of the path of the particle at $t=\frac{3 \pi}{4}$.

9.4 Derivatives of Vector-Valued Functions

Calculus

Practice

Each problem contains a vector-valued function. Find the given first or second derivative.

1. $f(t)=\left\langle 4 t^{3}+2 t^{2}+7 t, 4 t^{2}+3 t\right\rangle$, then $f^{\prime}(t)=$
2. $f(t)=\langle 3 \sin 2 t, 4 \cos 3 t\rangle$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
3. $f(t)=\left\langle 3 e^{2 t}, 5 e^{4 t}\right\rangle$, then $f^{\prime \prime}(t)=$
4. $f(t)=\left\langle e^{t}+e^{-t}, e^{t}-e^{-t}\right\rangle$, then $f^{\prime}(t)=$
5. $f(t)=\langle t \sin t, t \cos t\rangle$, then $f^{\prime}\left(\frac{\pi}{2}\right)=$
6. $f(t)=\langle 2 \sin 4 t, 2 \cos 3 t\rangle$, then $f^{\prime}(t)=$
7. $f(t)=\left\langle 3 t^{2}+6 t+1,4 t^{3}-2 t^{2}+6 t\right\rangle$, then $f^{\prime}(1)=$
8. The path of a particle moving along a path in the $x y$-plane is given by the vector-valued function, $f(t)=$ $\left\langle t^{3}+2 t^{2}+t, 2 t^{3}-4 t\right\rangle$. Find the slope of the path of the particle at $t=3$.
9. The position of a particle moving in the $x y$-plane is defined by the vector-valued function, $f(t)=\left\langle t^{3}-6 t^{2}, 2 t^{3}-9 t^{2}-24 t\right\rangle$. For what value of $t \geq 0$ is the particle at rest?

9.4 Derivatives of Vector-Valued Functions

Test Prep
11. Calculator active. The path of a particle moving along a path in the $x y$-plane is given by the vector-valued function f and f^{\prime} is defined by $f^{\prime}(t)=\left\langle t^{-1}, 2 k e^{k t}\right\rangle$ where k is a positive constant. The line $y=4 x+5$ is parallel to the line tangent to the path of the particle at the point where $t=2$. What is the value of k ?
12. At time $t, 0 \leq t \leq 2 \pi$, the position of a particle moving along a path in the $x y$-plane is given by the vectorvalued function, $f(t)=\langle t \sin t, \cos 2 t\rangle$. Find the slope of the path of the particle at time $t=\frac{\pi}{2}$.

