1. $f(t)=\left\langle 4 t^{3}+2 t^{2}+7 t, 4 t^{2}+3 t\right\rangle$, then $f^{\prime}(t)=$

$$
\begin{aligned}
& f^{\prime}(t)=\left\langle 12 t^{2}+4 t+7,8 t+3\right\rangle \\
& \text { 3. } f(t)=\left\langle 3 e^{2 t}, 5 e^{4 t}\right\rangle \text {, then } f^{\prime \prime}(t)= \\
& f^{\prime}(t)=\left\langle 6 e^{2 t}, 20 e^{4 t}\right\rangle \\
& f^{\prime \prime}(t)=\left\langle 12 e^{2 t}, 80 e^{4 t}\right\rangle \\
& f^{\prime}(t)=\langle 6 \cos (2 t),-12 \sin (3 t)\rangle \\
& f^{\prime}(\pi / 6)=\langle 6 \cos (\pi / 3),-12 \sin (\pi / 2)\rangle \\
& =\left\langle 6\left(\frac{\xi}{2}\right),-12(1)\right\rangle \\
& \langle 3,-12\rangle \\
& \text { 4. } f(t)=\left\langle t^{-2},(t+1)^{-1}\right\rangle \text {, then } f^{\prime \prime}(-2)= \\
& f^{\prime}(t)=\left\langle-2 t^{-3},-(t+1)^{-2}\right\rangle \\
& f^{\prime \prime}(t)=\left\langle 6 t^{-4}, 2(t+1)^{-3}\right\rangle \\
& f^{\prime \prime}(-2)=\left\langle\frac{6}{(-2)^{4}}, \frac{2}{(-2+1)^{-3}}\right\rangle \\
& \left\langle\frac{6}{16}, \frac{2}{-1}\right\rangle \\
& \left\langle\frac{3}{8},-2\right\rangle \\
& \text { 6. } f(t)=\langle 2 \sin 4 t, 2 \cos 3 t\rangle \text {, then } f^{\prime}(t)= \\
& f^{\prime}(t)=\langle 8 \cos (4 t),-6 \sin (3 t)\rangle \\
& \text { 7. } f(t)=\langle t \sin t, t \cos t\rangle \text {, then } f^{\prime}\left(\frac{\pi}{2}\right)= \\
& f^{\prime}(t)=\langle\sin t+t \cos t, \text { cos } t-t \sin t\rangle \quad \begin{array}{l}
f^{\prime}(1)= \\
f^{\prime}(t)=\left\langle 6 t+6, \quad 12 t^{2}-4 t+6\right\rangle
\end{array} \\
& \begin{aligned}
f^{\prime}\left(\frac{\pi}{2}\right) & =\left\langle\sin \frac{\pi}{2}+\frac{\pi}{2} \cos \frac{\pi}{2}, \cos \frac{\pi}{2}-\frac{\pi}{2} \sin \pi / 2\right\rangle \quad f^{\prime}(1)=\langle 6+6,12-4+6\rangle \\
& =\left\langle 1+\frac{\pi}{2}(0), 0-\frac{\pi}{2}(1)\right\rangle
\end{aligned} \\
& \left\langle 1,-\frac{\pi}{2}\right\rangle \quad f^{\prime}(1)=\langle 12,14\rangle
\end{aligned}
$$

2. $f(t)=\langle 3 \sin 2 t, 4 \cos 3 t\rangle$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
3. The path of a particle moving along a path in the $x y$-plane is given by the vector-valued function, $f(t)=$ $\left\langle t^{3}+2 t^{2}+t, 2 t^{3}-4 t\right\rangle$. Find the slope of the path of the particle at $t=3$.

$$
\begin{aligned}
& f^{\prime}(t)=\left\langle 3 t^{2}+4 t+1,6 t^{2}-4\right\rangle \\
& \frac{d y}{d x}=\left.\frac{d y / d t}{d x d t}\right|_{t=3}=\frac{6(3)^{2}-4}{3(3)^{2}+4(3)+1}=\frac{50}{40}=5 / 4
\end{aligned}
$$

10. The position of a particle moving in the $x y$-plane is defined by the vector-valued function, $f(t)=\left\langle t^{3}-6 t^{2}, 2 t^{3}-9 t^{2}-24 t\right\rangle$. For what value of $t \geq 0$ is the particle at rest?

$$
\begin{aligned}
& x^{\prime}(t)=3 t^{2}-12 t \\
& 3 t(t-4)=0
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}(t)=6 t^{2}-18 t-24 \\
& 6\left(t^{2}-3 t-4\right)=0 \\
& 6(t-4)(t+1)=0
\end{aligned}
$$

$$
t=4
$$

9.4 Derivatives of Vector-Valued Functions
11. Calculator active. The path of a particle moving along a path in the $x y$-plane is given by the vector-valued function f and f^{\prime} is defined by $f^{\prime}(t)=\left\langle t^{-1}, 2 k e^{k t}\right\rangle$ where k is a positive constant. The line $y=4 x+5$ is parallel to the line tangent to the path of the particle at the point where $t=2$. What is the value of k ?

$$
\begin{aligned}
\frac{y}{\partial x}=\left.\frac{2 e^{k t}}{t^{-1}}\right|_{t=4}=\frac{2 k e^{2 k}}{2^{-1}} \rightarrow 4 k e^{2 k} & =4 \\
k e^{2 k} & =1
\end{aligned}
$$

12. At time $t, 0 \leq t \leq 2 \pi$, the position of a particle moving along a path in the $x y$-plane is given by the vectorvalued function, $f(t)=\langle t \sin t, \cos 2 t\rangle$. Find the slope of the path of the particle at time $t=\frac{\pi}{2}$.
