For problems 1-2, find the vector-valued function $\boldsymbol{f}(\boldsymbol{t})$ that satisfies the given initial conditions.

1. $f(0)=\langle 1,4\rangle$ and $f^{\prime}(t)=\langle-4 \cos 2 t,-3 \sin 3 t\rangle$.
2. $f^{\prime}(0)=\langle 4,3\rangle, f(0)=\langle 2,0\rangle$ and $f^{\prime \prime}(t)=\left\langle 8 e^{2 t}, 3 e^{t}\right\rangle$.
3. The instantaneous rate of change of the vectorvalued function $f(t)$ is given by $f^{\prime}(t)=\langle 4 t, 5\rangle$. If $f(1)=\langle 9,7\rangle$ what is $f(2)$?
4. The position of a particle moving in the xy-plane is given by the parametric functions $x(t)$ and $y(t)$, where $\frac{d x}{d t}=4 \sin \frac{t}{2}$ and $\frac{d y}{d t}=2 \cos t$. The position of the particle is $(-2,5)$ at time $t=0$. What is the particle's position vector $\langle x(t), y(t)\rangle$?
5. Calculator active. At time $t \geq 0$, a particle moving in the $x y$-plane has a velocity vector given by $v(t)=$ $\left\langle 2,2^{-t^{2}}\right\rangle$. If the particle is at point $\left(1, \frac{1}{2}\right)$ at time $t=0$, how far is the particle from the origin at time $t=1$?
