9.5 Integrating Vector-Valued Functions

Calculus Name:

CA #2

For problems 1-2, find the vector-valued function f(t) that satisfies the given initial conditions.

- 1. $f(0) = \langle 2, 0 \rangle$ and $f'(t) = \langle 2e^{2t}, 3e^{t} \rangle$.
- 2. $f'(0) = \langle 0, 3 \rangle, f(0) = \langle 4, 0 \rangle$ and $f''(t) = \langle 4 \cos t, 3 \sin t \rangle.$

- 3. The instantaneous rate of change of the vector-valued function f(t) is given by $f'(t) = \langle 6t, 4 \rangle$. If $f(0) = \langle 2, 3 \rangle$ what is f(2)?
- 4. The position of a particle moving in the xy-plane is given by the parametric functions x(t) and y(t), where $\frac{dx}{dt} = \cos 3t$ and $\frac{dy}{dt} = \sin 2t$. The position of the particle is (4,5) at time t = 0. What is the particle's position vector $\langle x(t), y(t) \rangle$?

5. Calculator active. At time $t \ge 0$, a particle moving in the xy-plane has a velocity vector given by $v(t) = (1, 2^{-t^2})$. If the particle is at point (4, 5) at time t = 0, how far is the particle from the origin at time t = 1?