For problems 1-6, find the vector-val

1. $f(0)=\langle 2,4\rangle, f^{\prime}(t)=\left\langle 2 e^{t} 3 e^{3 t}\right\rangle$

$$
\begin{array}{ll}
x=\int 2 e^{t} & y=\int 3 e^{3 t} u-3 t \\
x=2 e^{t}+c & y=\int 3-e^{u} \frac{d n}{3} \frac{d d}{3}=d t \\
2=2+c & y=\int e^{u} d u=e^{3 t}+c \\
0=c & 4=e^{0}+C \\
& 3=c \\
f(t)=\left\langle 2 e^{t}, e^{3 t}+3\right\rangle
\end{array}
$$

that satisfies the given initial conditions.
2. $f(0)=\left\langle\frac{1}{2},-1\right\rangle, f^{\prime}(t)=\left\langle t e^{-t^{2}},-e^{-t}\right\rangle$

$$
\begin{aligned}
& x=\int t e^{2-t^{2}} d t \quad y=\int-e^{-t} \\
& u=-t \\
& \frac{d u}{2 t}=d t \\
& x=\int-\frac{1}{2} e^{2} d u \\
& y=\int e^{u} d u \\
& x=-\frac{1}{2} e^{-t^{2}}+c \quad y=e^{-t}+c \\
& \frac{1}{2}=-\frac{1}{2}+c \quad-1=e^{0}+c \\
& f(t)=\left\langle-\frac{1}{2} e^{-t^{2}}+1, e^{-t}-2\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } f(0)=\langle 3,1\rangle, f^{\prime}(t)=\left\langle 6 t^{2}, 4 t\right\rangle \\
& x=\int 6 t^{2} d t \quad y=\int 4 t d t \\
& x=2 t^{3}+c \quad y=2 t^{2}+c \\
& 3=C \quad 1=C \\
& f(t)=\left\langle 2 t^{3}+3,2 t^{2}+1\right\rangle \\
& \text { 4. } f(0)=\langle-2,5\rangle, f^{\prime}(t)=\langle 2 \cos t,-3 \sin t\rangle \\
& x=\int 2 \cos t d t \quad y=\int-3 \sin t d t \\
& x=2 \sin t+c \quad y=3 \text { cos } t+c \\
& -2=2 \sin 0+c \\
& 5=3 \cos (0)+C \\
& -2=c \\
& 5=3+C \\
& 2=c \\
& f(t)=\langle 2 \sin t-2,3 \cos t+2\rangle \\
& \text { 5. } f^{\prime}(0)=\langle 3,0\rangle, f(0)=\langle 0,3\rangle, \\
& f^{\prime \prime}(t)=\langle 5 \cos t,-2 \sin t\rangle \\
& x^{\prime}=\int 5 \cos t d t \quad y^{\prime}=\int-2 \sin t d t \\
& x^{\prime}=5 \sin t+c \\
& y^{\prime}=2 \cos t+c \\
& 0=2+C \\
& -2=c \\
& x=\int 5 \sin t+3 d t \\
& y=\int 2 \cos t-2 d t \quad x=\int t^{4} d t \\
& y=\int t^{3}+2 d t \\
& x=-5 \cos t+3 t+c \\
& y=2 \sin t-2 t+c \\
& 3=2(0)-2(0)+C \\
& 3=C \\
& f(t)=\langle-5 \cos t+3 t+5,2 \sin t-2 t+3\rangle \\
& \text { 7. Calculator active. For } t \geq 0 \text {, a particle is moving } \\
& \text { along a curve so that its position at time } t \text { is } \\
& (x(t), y(t)) \text {. At time } t=1 \text {, the particle is at } \\
& \text { position }(2,4) \text {. It is known that } \frac{d x}{d t}=\frac{\sqrt{t+3}}{e^{t}} \text { and } \\
& \frac{d y}{d t}=\cos ^{2} t \text {. Find the } x \text {-coordinate of the particles } \\
& \text { position at time } t=5 \text {. } \\
& x(5)=2+\int_{1}^{5} \frac{\sqrt{t+3}}{e^{t}} d t \\
& x(5)=2.7988
\end{aligned}
$$

9. Calculator active. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle 3 t^{2}, 3\right\rangle$. If the particle is at point $(1,2)$ at time $t=0$, how far is the particle from the origin at time $t=2$?

$$
\begin{array}{ll}
x=1+\int_{0}^{2} 3 t^{2} d t & y=2+\int_{0}^{2} 3 d t \\
x=9 & y=8
\end{array}
$$

distance from origin:

$$
\sqrt{9^{2}+8^{2}} \approx 12.0415
$$

10. Calculator active. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle 2, \frac{\cos t}{e^{t}}\right\rangle$. If the particle is at point $(1,2)$ at time $t=0$, how far is the particle from the origin at time $t=3$?

$$
\begin{array}{ll}
x=1+\int_{0}^{3} 2 d t & y=2+\int_{0}^{3} \frac{\text { cost }}{e^{t}} d t \\
x=7 & y=2.528157388 \\
\text { Distance from origin. } & y A
\end{array}
$$

Distance from origin:

$$
\sqrt{7^{2}+A^{2}} \approx 7.4425
$$

9.5 Integrating Vector-Valued Functions
11. Calculator active. A remote controlled car travels on a flat surface. The car starts at the point with coordinates $(7,6)$ at time $t=0$. The coordinates $(x(t), y(t))$ of the position change at rates given by $x^{\prime}(t)=-10 \sin t^{2}$ and $y^{\prime}(t)=9 \cos (2+\sqrt{t})$, where $x(t)$ and $y(t)$ are measured in feet and t is measured in minutes. Find the y-coordinate of the position of the car at time $t=1$.

$$
\begin{aligned}
& y(1)=6+\int_{0}^{9} 9 \cos (2+\sqrt{t}) d t \\
& y(1)=-1.789
\end{aligned}
$$

12. The instantaneous rate of change of the vector-valued function $f(t)$ is given by $f^{\prime}(t)=\left\langle 2+20 t-4 t^{3}, 6 t^{2}+2 t\right\rangle$. If $f(1)=\langle 5,-3\rangle$, what is $f(-1) ?$

$$
\begin{aligned}
x(-1) & =5+\int_{1}^{-1} 2+20 t-4 t^{3} d t \\
& =5+\left.\left[2 t+10 t^{2}-t^{4}\right]\right|_{1} ^{-1} \\
& =5+[-2+10-1]-[2+10-1] \\
& =5+7-11
\end{aligned}
$$

$$
\begin{aligned}
y(-1) & =-3+\int_{1}^{-1} 6 t^{2}+2 t d t \\
& =-3+\left.\left[2 t^{3}+t^{2}\right]\right|_{1} ^{-1} \\
& =-3+[-2+1]-[2+1] \\
& =-3-1-3
\end{aligned}
$$

$$
f(-1)=\langle 1,-7\rangle
$$

