1. A particle moving along a curve in the xy-plane has position (x(t), y(t)), at time $t \ge 0$, where $\frac{dx}{dt} = 3\cos(\pi t)$ and $\frac{dy}{dt} = 3t^2$. Find the speed of the particle at time t = 2.

2. For time $t \ge 0$, the position of a particle moving in the *xy*-plane is given by the parametric equations $x(t) = t + t^2$ and $y(t) = (3t + 1)^{-1}$. What is the acceleration vector of the particle at time t = 1?

3. For time $t \ge 0$, the position of a particle moving in the *xy*-plane is given by the vector $(2t^{-2}, e^t)$. What is the velocity vector of the particle at time t = 3.

- 4. Calculator active. The position of a particle at time $t \ge 0$ is given by $x(t) = \frac{\sqrt{t+1}}{3}$ and $y(t) = t^2 + 1$. Find the total distance traveled by the particle from t = 0 to t = 2.
- 5. Calculator active. The velocity vector a particle moving in the *xy*-plane has components given by $\frac{dx}{dt} = \sin 2t$ and $\frac{dy}{dt} = e^{\cos t}$. At time t = 2, the position of the particle is (3, 2). What is the *x*-coordinate of the position vector at time t = 3?

S. 2.193	4. 4.023	$3. \langle -\frac{27}{4}, 6^3 \rangle$	Σ [.] (Σ' ³⁵ / ₆)	1. V <u>153</u>	
Answers to 9.6 CA #1					