1. A particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$, at time $t \geq 0$, where $\frac{d x}{d t}=2 t+1$ and $\frac{d y}{d t}=5$. Find the speed of the particle at time $t=2$.
2. For time $t \geq 0$, the position of a particle moving in the $x y$-plane is given by the parametric equations $x(t)=$ $3 \cos t$ and $y(t)=2 \sin t$. What is the acceleration vector of the particle at time $t=0$?
3. For time $t \geq 0$, the position of a particle moving in the $x y$-plane is given by the vector $\left\langle\frac{1}{4} t^{3}+2,2 t\right\rangle$. What is the velocity vector of the particle at time $t=2$.
4. Calculator active. The position of a particle at time $t \geq 0$ is given by $x(t)=4 t^{2}-t$ and $y(t)=2 t^{3}+t$. Find the total distance traveled by the particle from $t=0$ to $t=3$.
5. Calculator active. The velocity vector a particle moving in the $x y$-plane has components given by $\frac{d x}{d t}=\frac{\sqrt{t}}{e^{t}}$ and $\frac{d y}{d t}=\cos \frac{t}{2}$. At time $t=1$, the position of the particle is $(4,3)$. What is the y-coordinate of the position vector at time $t=3$?
