
Calculus

Write your questions and thoughts here! Position: $r(t) = \langle x(t), y(t) \rangle$ <u>Velocity</u>: $v(t) = r'(t) = \langle x'(t), y'(t) \rangle$ Acceleration: $a(t) = r''(t) = \langle x''(t), y''(t) \rangle$ Speed: ||v(t)|| = ||r'(t)|| =1. Find the velocity vector, speed, and acceleration vector for the particle that moves in the xy-plane described by $r(t) = \langle 5 \sin \frac{t}{5}, 5 \cos \frac{t}{5} \rangle$ Quick review: When does a particle's speed increase or decrease? Speeding up Velocity & Acceleration have **Slowing down** Velocity & Acceleration have 2. If $r(t) = \langle 2t^3 + t, t^2 \rangle$, find velocity and acceleration at time t. 3. Find the speed at time t = 2 if $r(t) = \langle 3t, e^{-t^2} \rangle$ Total Distance Traveled by a Partice on [a, b]. $\int_{0}^{b} \|v(t)\| dt =$

9.6 Motion using Parametric and Vector-Valued Functions

Calculus

Practice

For each problem, a particle moves in the <i>xy</i> -plane where the coordinates are defined at any time <i>t</i> by the position function given in parametric or vector form.				
1. $x(t) = 4t^2$ and $y(t) = 2t - 1$. Find the velocity vector at time $t = 1$.	2. $x(t) = e^{-t}$ and $y(t) = e^{t}$. Find the acceleration vector at time $t = 1$.			

3.	$(x(t), y(t)) = (6 - 2t, t^2 + 3)$. In which direction is the particle moving as it passes through the point (4, 4)?	4.	A position vector is $r(t) = \langle \frac{2}{t}, e^{4t} \rangle$ for time $t > 0$. What is the velocity vector at time $t = 1$?
5	$r(t) = \langle \ln(t^2 + 1), 3t^2 \rangle$ for $t > 0$. Find the	6	$x(t) = 2\sin\frac{t}{2}$ and $y(t) = 2\cos\frac{t}{2}$ for time $t > 0$.
	velocity vector at time $t = 2$.		Find the speed of the particle.
7.	Calculator active. $x(t) = t^2 + 1$ and $y(t) = \frac{4}{3}t^3$ for time $t \ge 0$. Find the total distance traveled from $t = 0$ to $t = 3$.	8.	$p(t) = \langle \cos 2t, 2 \sin t \rangle$. Find the velocity vector $v(t)$.

 9. Calculator active. The velocity vector of a particle moving in the <i>xy</i>-plane has components given by dx/dt = cos t² and dy/dt = e^{t-2}. At time t = 3, the position of the particle is (1, 2). What is the <i>y</i>-coordinate of the position vector at time t = 2? 	 10. At time t ≥ 0, a particle moving in the xy-plane has velocity vector given by v(t) = (t³, 4t). What is the acceleration vector when t = 2? 				
 11. The acceleration vector of a particle moving in the <i>xy</i>-plane is given by <i>a</i>(<i>t</i>) = ⟨2, 3⟩. When <i>t</i> = 0 the velocity vector is ⟨3, 1⟩ and the position vector is ⟨1, 5⟩. Find the position when time <i>t</i> = 2. 	12. A particle moves on the curve $y = 2x$ so that the <i>x</i> -component has velocity $x'(t) = 3t^2 + 1$ for $t \ge 0$. At time $t = 0$, the particle is at the point $(2, 4)$. At what point is the particle when $t = 1$? [This one is tricky!]				
For problems 13-15: At time t, $0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by parametric equations $x(t) = \cos 2t$ and $y(t) = \sin 2t$.					
13. Find the speed of the particle when $t = 1$.	14. Find the acceleration vector at time $t = \frac{\pi}{4}$.				

15. Find the distance traveled from t = 0 to t = 3.

9.6 Motion using Parametric and Vector-Valued Functions

- Functions Test Prep
- 16. Calculator active. A remote-controlled car moves along a flat surface over the time interval $0 \le t \le 30$ seconds. The position of the remote-controlled car at time t is given by the parametric equations $x(t) = 2t + \sin t$ and $y(t) = 2\cos(t \sin t)$, where x(t) and y(t) are measured in feet. The derivatives of these functions are given by $x'(t) = 2 + \cos t$ and $y'(t) = -2\sin(t \sin t)(1 \cos t)$.
 - a. Write the equation for the line tangent to the path of the remote-controlled car at time t = 3 seconds.

b. Find the speed of the remote-controlled car at time t = 15 seconds.

c. Find the acceleration vector of the remote-controlled car at the time when the car is at the point with xcoordinate 40.