Position: $r(t)=\langle x(t), y(t)\rangle$
Velocity: $v(t)=r^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$
Acceleration: $a(t)=r^{\prime \prime}(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$

Speed: $\|v(t)\|=\left\|r^{\prime}(t)\right\|=$

1. Find the velocity vector, speed, and acceleration vector for the particle that moves in the $x y$-plane described by $r(t)=\left\langle 5 \sin \frac{t}{5}, 5 \cos \frac{t}{5}\right\rangle$

Quick review: When does a particle's speed increase or decrease?

Speeding up

Velocity \& Acceleration have

Slowing down

Velocity \& Acceleration have
2. If $r(t)=\left\langle 2 t^{3}+t, t^{2}\right\rangle$, find velocity and acceleration at time t.
3. Find the speed at time $t=2$ if $r(t)=\left\langle 3 t, e^{-t^{2}}\right\rangle$

Total Distance Traveled by a Partice on $[a, b]$.

$$
\int_{a}^{b}\|v(t)\| d t=
$$

4. Given the velocity vector of the particle $v(t)=\langle 2 t+1,5\rangle$ and the position of the particle at time $t=0$ is $(1,2)$, find the position when $t=3$. What is the total distance traveled on the interval $0 \leq t \leq 3$?
5. A particle moving along a curve so that its velocity for time $t \geq 0$ is given by $v(t)=\left\langle 2 e^{-\frac{t}{4},} \frac{t-4}{t+5}\right\rangle$.
a. For what values of t is the particle moving to the right?
b. For what values of t is the particle moving up?

9.6 Motion using Parametric and Vector-Valued Functions

Practice

For each problem, a particle moves in the $\boldsymbol{x y}$-plane where the coordinates are defined at any time \boldsymbol{t} by the position function given in parametric or vector form.

1. $x(t)=4 t^{2}$ and $y(t)=2 t-1$. Find the velocity vector at time $t=1$.
2. $x(t)=e^{-t}$ and $y(t)=e^{t}$. Find the acceleration vector at time $t=1$.
3. $(x(t), y(t))=\left(6-2 t, t^{2}+3\right)$. In which direction is the particle moving as it passes through the point $(4,4)$?
4. A position vector is $r(t)=\left\langle\frac{2}{t}, e^{4 t}\right\rangle$ for time $t>0$. What is the velocity vector at time $t=1$?
5. $r(t)=\left\langle\ln \left(t^{2}+1\right), 3 t^{2}\right\rangle$ for $t>0$. Find the velocity vector at time $t=2$.
6. $x(t)=2 \sin \frac{t}{2}$ and $y(t)=2 \cos \frac{t}{2}$ for time $t>0$.

Find the speed of the particle.
7. Calculator active. $x(t)=t^{2}+1$ and $y(t)=\frac{4}{3} t^{3}$ for time $t \geq 0$. Find the total distance traveled from $t=0$ to $t=3$.
8. $p(t)=\langle\cos 2 t, 2 \sin t\rangle$. Find the velocity vector $v(t)$.
9. Calculator active. The velocity vector of a particle moving in the $x y$-plane has components given by $\frac{d x}{d t}=\cos t^{2}$ and $\frac{d y}{d t}=e^{t-2}$. At time $t=3$, the position of the particle is $(1,2)$. What is the y-coordinate of the position vector at time $t=2$?
10. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle t^{3}, 4 t\right\rangle$. What is the acceleration vector when $t=2$?
11. The acceleration vector of a particle moving in the $x y$-plane is given by $a(t)=\langle 2,3\rangle$. When $t=0$ the velocity vector is $\langle 3,1\rangle$ and the position vector is $\langle 1,5\rangle$. Find the position when time $t=2$.
12. A particle moves on the curve $y=2 x$ so that the x-component has velocity $x^{\prime}(t)=3 t^{2}+1$ for $t \geq 0$. At time $t=0$, the particle is at the point $(2,4)$. At what point is the particle when $t=1$? [This one is tricky!]

For problems 13-15: At time $t, 0 \leq t \leq 2 \pi$, the position of a particle moving along a path in the $\boldsymbol{x y}$-plane is given by parametric equations $x(t)=\cos 2 t$ and $y(t)=\sin 2 t$.

13. Find the speed of the particle when $t=1$.	14. Find the acceleration vector at time $t=\frac{\pi}{4}$.

15. Find the distance traveled from $t=0$ to $t=3$.

9.6 Motion using Parametric and Vector-Valued Functions

16. Calculator active. A remote-controlled car moves along a flat surface over the time interval $0 \leq t \leq 30$ seconds. The position of the remote-controlled car at time t is given by the parametric equations $x(t)=2 t+$ $\sin t$ and $y(t)=2 \cos (t-\sin t)$, where $x(t)$ and $y(t)$ are measured in feet. The derivatives of these functions are given by $x^{\prime}(t)=2+\cos t$ and $y^{\prime}(t)=-2 \sin (t-\sin t)(1-\cos t)$.
a. Write the equation for the line tangent to the path of the remote-controlled car at time $t=3$ seconds.
b. Find the speed of the remote-controlled car at time $t=15$ seconds.
c. Find the acceleration vector of the remote-controlled car at the time when the car is at the point with x coordinate 40.
