1. Find the slope of the tangent line to the polar curve $r=2+4 \sin \theta$ at $\theta=\pi$.
2. A particle moves along the polar curve $r=4-2 \cos \theta$ so that $\frac{d \theta}{d t}=4$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$.
3. For $0 \leq \theta \leq 2 \pi$, find the values of θ for which the polar curve $r=3 \sin \theta \underline{\text { might }}$ have a vertical tangent line. Then use a graphing utility to eliminate any of your possible answers.
4. A polar curve is given by the equation $r=2 \csc \theta+3$ for $\theta \geq 0$. What is the instantaneous rate of change of r with respect to θ where $\theta=\frac{\pi}{4}$.
5. Calculator active. For a certain polar curve $r=f(\theta)$, it is known that $\frac{d x}{d \theta}=3 \cos \theta-3 \theta \sin \theta$ and $\frac{d y}{d \theta}=3(\sin \theta+\theta \cos \theta)$. What is the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=3$?

$66 Z^{\prime} L-{ }^{\text {- }}$	Zノて- \dagger	$\frac{\downarrow}{u \varepsilon} \cdot \frac{t}{u} \cdot \varepsilon$		$\frac{\mathrm{z}}{\mathrm{L}}-\cdot \mathrm{I}$

