Calculus

1. Find the slope of the tangent line to the polar curve r = 4 at $\theta = \frac{\pi}{4}$.

2. A particle moves along the polar curve $r = 5 \sin 2\theta$ so that $\frac{d\theta}{dt} = 2$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{2}$.

3. For $0 \le \theta \le 2\pi$, find the values of θ for which the polar curve $r = 1 - \sin \theta$ might have a vertical tangent line. Second, use a graphing utility to eliminate any of your possible answers.

4. A polar curve is given by the equation $r = 5 - 4 \sin \theta$ for $\theta \ge 0$. What is the instantaneous rate of change of r with respect to θ where $\theta = \frac{\pi}{6}$.

5. Calculator active. For a certain polar curve $r = f(\theta)$, it is known that $\frac{dx}{d\theta} = \cos \theta - \theta \sin \theta$ and $\frac{dy}{d\theta} = \sin \theta + \theta \cos \theta$. What is the value of $\frac{d^2y}{dx^2}$ at $\theta = 5$?

<i>5</i> . 0.206	4. –2√ <u>3</u>	3. $\frac{7\pi}{6}, \frac{11\pi}{6}$ eliminated $\frac{\pi}{2}$	2. –20	1. –1
Answers to 9.7 CA #2				