the polar coordinates $\left(7, \frac{5 \pi}{4}\right)$.

$$
\begin{array}{cl}
x=7 \cos \left(\frac{5 \pi}{4}\right)^{x} & y=7 \sin \left(\frac{5 \pi}{4}\right) \\
x=7\left(-\frac{\sqrt{2}}{2}\right) & y=7\left(-\frac{\sqrt{2}}{2}\right) \\
\left(-\frac{7 \sqrt{2}}{2},-\frac{7 \sqrt{2}}{2}\right)
\end{array}
$$

3. Convert the rectangular equation $x^{2}+y^{2}=16$ to a polar equation.
$\underbrace{}_{r^{2}}$

$$
\begin{aligned}
& r^{2}=16 \\
& r=4
\end{aligned}
$$

2. Calculator active. Find two sets of polar coordinates for the rectangular coordinate $(4,-2)$. Limit your answers on the interval $0 \leq \theta_{2} \leq 2 \pi$.

$$
\tan \theta=-\frac{2}{4} \quad 4^{2}+(-2)^{2}=r^{2}
$$

$$
\theta=-0.4636 \quad 20=r^{2}
$$

$$
+2 \pi
$$

$$
(\sqrt{20}, 5.819) \text { or }(-\sqrt{20}, 2.678)
$$

4. Convert the polar equation $r=3 \sec \theta$ to a rectangular equation.

$$
\begin{array}{r}
r=3 \frac{1}{\cos \theta} \\
r \cos \theta=3 \\
x=3
\end{array}
$$

5. Sketch the polar curve $r=2 \cos 3 \theta$ for $0 \leq \theta \leq \pi$ without a calculator, then check your answer.

r	θ		
2	0	5	θ
$\sqrt{2}$	$\pi / 12$	-2	$\pi / 3$
0	$\pi / 6$	$-\sqrt{2}$	$5 / 12$
$-\sqrt{2}$	$\pi / 4$	0	$\pi / 2$

Using o T-chart
Plug in values of Θ.

5	θ
$\sqrt{2}$	$7 \pi / 12$
2	$2 \pi / 3$
	$9 \pi / 2$

Find the slope of the line tangent to the polar curve at the given value of $\boldsymbol{\theta}$.
6. $r=3 \theta$ at $\theta=\frac{\pi}{2}$.

$$
\begin{array}{ll}
x=3 \theta \cos \theta & y=3 \theta \sin \theta \\
x^{\prime}=3 \cos \theta-3 \theta \sin \theta & y^{\prime}=3 \sin \theta+3 \theta \cos \theta \\
r^{\prime}=\frac{3 \sin \theta+30 \cos \theta}{3 \cos \theta-3 \theta \sin \theta} \\
r^{\prime}(\theta)=\frac{3(1)+3\left(\frac{\pi}{2}\right)(0)}{3(0)-3\left(\frac{\pi}{2}\right)(1)}=\frac{3}{-\frac{3 \pi}{2}}=-\frac{2}{\pi}
\end{array}
$$

$$
\begin{aligned}
& \text { 7. } r=\frac{5}{3-\cos \theta} \text { at } \theta=\frac{3 \pi}{2} \text {. } \\
& x=\frac{5}{3-\cos \theta} \cdot \cos \theta \quad y=\frac{5}{3-\cos \theta} \cdot \sin \theta \\
& x^{\prime}=\frac{-5 \sin \theta[3-\cos \theta)-5 \cos \theta[\sin \theta]}{(3-\cos \theta)^{2}} \\
& x^{\prime}(3 \pi)=\frac{-5(-1)(3-0)-5(0)(-1)}{(3-0)^{2}}=15 \\
& y^{\prime}=\frac{5 \cos \theta[3-\cos \theta]-5 \sin \theta[\sin \theta]}{(3-\cos \theta)^{2}} \\
& y^{\prime}\left(\frac{3 \pi}{2}\right)=\frac{5(0)[3-0]-5(-1)(-1)}{(3-0)^{2}}=-5 / 9 \\
& r^{\prime}\left(\frac{3 \pi}{2}\right)=\frac{y^{\prime}\left(3 \frac{1}{2}\right)}{x^{\prime}(3 / 2)}=\frac{-5 / 9}{15 / 9}=-1 / 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } r=\cos \theta \text { at } \theta=\frac{\pi}{3} \text {. } \\
& x=\cos \theta \cdot \cos \theta \quad y=\cos \theta \cdot \sin \theta \\
& x=\cos ^{2} \theta \\
& x^{\prime}=-2 \cos \theta \sin \theta \quad y^{\prime}=-\sin ^{2} \theta+\cos ^{2} \theta \\
& x^{\prime}(\pi / 3)=-2\left(\frac{1}{2}\right)(\sqrt{3}) \quad y^{\prime}\left(\frac{\pi}{3}\right)=-(\sqrt{3} / 2)^{2}+\left(\frac{1}{2}\right)^{2} \\
& =-\sqrt{3} 2=-\frac{3}{4}+\frac{1}{4}=-\frac{1}{2} \\
& r^{\prime}(\pi / 3)=\frac{y^{\prime}(\pi / 3)}{x^{\prime}(\pi / 3)}=\frac{-\frac{1}{2}}{-\sqrt{3 / 2}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

10. A particle moves along the polar curve $r=$ $3 \cos \theta$ so that $\frac{d \theta}{d t}=2$. Find the value of $\frac{d r}{d t}$ at $\theta=$ $\frac{\pi}{3}$. Hint: remember implicit differentiation?

$$
\begin{aligned}
& \frac{d r}{d t}=-3 \sin \theta \frac{d \theta}{d t} \\
& \text { At } \theta=\frac{\pi}{3} \rightarrow-3(\sqrt{2})(2)
\end{aligned}
$$

$$
-3 \sqrt{3}
$$

12. Find the values) of θ where the polar graph $r=2-2 \cos \theta$ has a horizontal tangent line on the interval $0 \leq \theta \leq 2 \pi$. Use a graphing calculator to verify your answers.

$$
\begin{aligned}
& r^{\prime}=\frac{y^{\prime}}{x^{\prime}} \quad \text { Horizontal tangent } \\
& y=(2-2 \cos \theta) \cdot \sin \theta \\
& y^{\prime}=2 \sin \theta \sin \theta+(2-2 \cos \theta) \cos \theta \\
& 0=2 \sin ^{2} \theta+2 \cos \theta-2 \cos ^{2} \theta \\
& 0=2\left(1-\cos ^{2} \theta\right)+2 \cos \theta-2 \cos ^{2} \theta
\end{aligned}
$$

$$
\frac{0}{-2}=\frac{2-4 \cos ^{2} \theta+2 \cos \theta}{2-2}
$$

$$
0=2 \cos ^{2} \theta-\cos \theta-1
$$

$$
\theta=(2 \cos \theta+1)(\cos \theta-1)
$$

$$
\cos \theta=-1 / 2
$$

$$
\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}
$$

11. A polar curve is given by the equation $r=\frac{15 \theta}{\theta^{2}+1}$ for $\theta \geq 0$. What is the instantaneous rate of change of r with respect to θ when $\theta=1$?
This problem is different! It is not the slope of the tangent line, it is instantaneous rate of change with respect to θ.

$$
\begin{aligned}
& r^{\prime}(\theta)=\frac{15\left(\theta^{2}+1\right)-15 \theta(2 \theta)}{\left(\theta^{2}+1\right)^{2}} \\
& r^{\prime}(1)=\frac{15(2)-30(1)(1)}{4}=\frac{0}{4}=0
\end{aligned}
$$

13. Find the values) of θ where the polar graph $r=3-3 \sin \theta$ has a vertical tangent line on the interval $0 \leq \theta \leq 2 \pi$. Use a graphing calculator to verify your answers.
Vertical tangent when $x^{\prime}=0$

$$
x=(3-3 \sin \theta) \cos \theta
$$

$$
x^{\prime}=(-3 \cos \theta) \cos \theta+(3-3 \sin \theta)(-\sin \theta)
$$

$$
0=-3 \cos ^{2} \theta-3 \sin \theta+3 \sin ^{2} \theta
$$

$$
0=-3\left(1-\sin ^{2} \theta\right)-3 \sin \theta+3 \sin ^{2} \theta
$$

$$
\frac{0}{3}=\frac{-3+6 \sin ^{2} \theta-3 \sin \theta}{3}
$$

$$
0=2 \sin ^{2} \theta-\sin \theta-1
$$

$$
0=(2 \sin \theta+1)(\sin \theta-1)
$$

$\sin \theta=-\frac{1}{2} \quad \sin \theta=1$

14. Calculator active. For a certain polar curve $r=f(\theta)$, it is known that $\frac{d x}{d \theta}=\cos \theta-\theta \sin \theta$ and $\frac{d y}{d \theta}=$ $\sin \theta+\theta \cos \theta$. What is the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=3$?

$$
\frac{d^{2} y}{d x_{2}}=\left.\frac{\frac{d}{d a}\left[\frac{\sin \theta+\cos \theta}{\cos \theta-\sin \theta}\right]}{\cos \theta-\theta \sin \theta}\right|_{\theta=3} \approx \frac{5.506731}{-1.413352}=-3.896
$$

15. A polar curve is given by the differentiable function $r=f(\theta)$ for $0 \leq \theta \leq 2 \pi$. If the line tangent to the polar curve at $\theta=\frac{\pi}{6}$ is vertical, which of the following must be true?

$$
\begin{aligned}
& \text { Slope }=\frac{y^{\prime}}{x^{\prime}}=\frac{[f(\theta) \sin \theta]^{\prime}}{[f(\theta) \cos \theta]^{\prime}}=0 \rightarrow f^{\prime}\left(\frac{\pi}{6}\right) \cos \frac{\pi}{6}+f\left(\frac{\pi}{6}\right) \cdot\left(-\sin \frac{\pi}{6}\right) \\
& \begin{array}{llll}
\text { A. } f\left(\frac{\pi}{6}\right)=0 & \text { B. } f^{\prime}\left(\frac{\pi}{6}\right)=0 & \text { C. } \frac{1}{2} f\left(\frac{\pi}{6}\right)-\frac{\sqrt{3}}{2} f^{\prime}\left(\frac{\pi}{6}\right)=0 & \text { D. } \frac{\sqrt{3}}{2} f^{\prime}\left(\frac{\pi}{6}\right)-\frac{1}{2} f\left(\frac{\pi}{6}\right)=0
\end{array}
\end{aligned}
$$

16. Calculator active. For $0 \leq t \leq 8$, a particle moving in the $x y$-plane has position vector $\langle x(t), y(t)\rangle=$ $\left\langle\sin (2 t), t^{2}-t\right\rangle$, where $x(t)$ and $y(t)$ are measured in meters and t is measured in seconds.
a. Find the speed of the particle at time $t=3$ seconds. Indicate units of measure.

$$
\begin{array}{lc}
x^{\prime}=2 \cos (2 t) & \sqrt{\left[2 \cos (2(3))^{2}+(2(3)-1)^{2}\right.} \\
y^{\prime}=2 t-1 & 5.356
\end{array}
$$

b. At time $t=5$ seconds, is the speed of the particle increasing or decreasing? Explain your answer.

$$
\begin{array}{r}
\left.\frac{d}{d t} \sqrt{[2 \cos (2 t)]^{2}+(2 t-1)^{2}}\right|_{t=5} \approx 1.567 \\
\quad \text { Increasing } / c \frac{d}{d t} \text { (speed) }>0 .
\end{array}
$$

c. Find the total distance the particle travels over the time interval $0 \leq t \leq 6$ seconds.
d. At time $t=8$ seconds, the particle begins moving in a straight line. For $t \geq 8$, the particle travels with the same velocity vector that it had at time $t=8$ seconds. Find the position of the particle at time $t=11$ seconds.
Position at $t=8$ is $\langle x(8), y(8)\rangle=\langle-0.2879,56\rangle$
velocity at $t=8$ is $\left\langle x^{\prime}(8), y^{\prime}(8)\right\rangle=\langle-1.915318,15\rangle$
position at $t=11$ is $\langle x(8), y(8)\rangle+3 \cdot\left\langle x^{\prime}(8), y^{\prime}(8)\right\rangle$

$$
\langle-6.0338,101\rangle
$$

