

3. Inside the graph of the limacon
$$r = 4 + 2 \cos \theta$$
.
 $6 = 4 + 2 \cos \theta$.
 $1 = \cos 2\theta$.
 $0 = 2\cos 2\theta$.
 $A = 2 \int_{2\pi}^{2\pi} [\cos(2\theta)]^2 d\theta$
 $A = 2\sin \theta - 1$.
 $0 =$

7. Write but do not solve, an expression that will give the area enclosed by one petal of the 3 petaled rose $r = 4 \cos 3\theta$ found in the first and fourth quadrant.

 $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \left[\frac{4}{\cos(30)} \right] d\theta$

8. Write but do not solve an expression that can be used to find the area of the shaded region of the polar curve $r = 3 - 2\sin\theta$.

1=3-25ino 5=3-25:00 1=5;00 -1=5;00 $\Theta = \frac{1}{2}$ $\Theta = \frac{3}{2}$ -2sinoJdo 0=33

9. Write but do not solve an expression to find the area of the shaded region of the polar curve $r = \cos 2\theta$.

 $\Theta_{2}=0.729727$ $\Theta_{1}=10,2.4118649$ $\Omega_{2}=11-0,2.4118649$ $\Omega_{3}=11-0,2.4118649$

9:0.729727

11.

1.7635

Test Prep

Let R be the region in the first quadrant that is bounded by the polar curves $r = \frac{\theta}{2}$ and $\theta = k$, where k is a constant, $0 < k < \frac{\pi}{2}$, as shown in the figure above. What is the area of R in terms of k?

Calculator active. Consider the polar curve defined by the function $r(\theta) = 2\theta \cos \theta$, where $0 \le \theta \le \frac{3\pi}{2}$. The derivative of *r* is given by $\frac{dr}{d\theta} = 2\cos\theta - 2\theta\sin\theta$. The figure above shows the graph of *r* for $0 \le \theta \le \frac{3\pi}{2}$.

a. Find the area of the region enclosed by the inner loop of the curve.

b. For $0 \le \theta \le \frac{3\pi}{2}$, find the greatest distance from any point on the graph of r to the origin. Justify your answer.

c. There is a point on the curve at which the slope of the line tangent to the curve is $\frac{2}{2-\pi}$. At this point, $\frac{dy}{d\theta} = \frac{1}{2}$. Find $\frac{dx}{d\theta}$ at this point.

$$\frac{dy}{dx} = \frac{y'(0)}{x'(0)} = \frac{1}{x'(0)} = \frac{1}{2-11} = \frac{1}{x'(0)} = \frac{1}{2-11} = \frac{1}{x'(0)} = \frac{1}{2} \cdot \frac{1-11}{2} = \frac{1}{x'(0)} = \frac{1}{2} \cdot \frac{1-11}{2} = \frac{1}{x'(0)} = \frac{1}{x'(0$$