1. Inside the smaller loop of the limaçon
$0=2 \sin \theta+1$
$-\frac{1}{2}=\sin \theta$
$\theta=7 \frac{7 \pi}{6}, 11 \pi / 6$
$A=\frac{1}{2} \int_{7 \pi / 6}^{1 \pi / 4}[2 \sin \theta+1]^{2} d \theta$

$$
A \approx 0.5435
$$

2. The region enclosed by the cardioid
$r=2+2 \cos \theta$ $r=2+2 \cos \theta$

$$
\begin{aligned}
& 4=2+2 \cos \theta \\
& 2=2 \cos \theta
\end{aligned}
$$

$$
1=\cos \theta
$$

$$
\theta=0,2 \pi
$$

$$
A=\frac{1}{2} \int_{0}^{2 \pi}[2+2 \cos \theta]^{2} d \theta
$$

$$
A=18.8495
$$

3. Inside the graph of the limaçon $r=4+2 \cos \theta$.

$$
\begin{aligned}
& 6=4+2 \cos \theta \\
& 2=2 \cos \theta \\
& 1=\cos \theta \\
& \theta=0,2 \pi \\
& A=\frac{1}{2} \int_{0}^{2 \pi}[4+2 \cos \theta]^{2} d \theta \\
& A \approx 56.5486
\end{aligned}
$$

 $r=\cos 2 \theta$.

$$
0=\cos 2 \theta
$$

5. Inside one loop of the lemniscate $r^{2}=4 \cos 2 \theta$.

$$
\begin{aligned}
& 0=4 \cos 2 \theta \\
& 0=\cos 2 \theta \\
& 2 \theta=\frac{\pi}{2}, 3 \pi / 2,5 \pi / 2, \cdots \\
& \theta=\frac{\pi / 4}{4}, 3 \pi / 4 / \frac{\operatorname{res}}{1} 5 \pi / 4, \cdots \\
& \left.A=\frac{1}{2} \int_{\frac{5 \pi}{4}}^{4 \pi} \sqrt{4 \cos (2 \theta)}\right]^{2} d \theta \\
& A \approx 2
\end{aligned}
$$

6. Inside the inner loop of the limaçon

$$
\begin{aligned}
& r=2 \sin \theta-1 \\
& 0=2 \sin \theta-1 \\
& \frac{1}{2}=\sin \theta \\
& \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& A=\frac{1}{2} \int_{\frac{\pi}{6}}^{5 \pi / 6}[2 \sin \theta-1]^{2} d \theta \\
& A \approx 0.5435
\end{aligned}
$$

one possible setup

$$
\begin{aligned}
& A=\frac{1}{2} \int_{\left[\frac{1}{4}\right.}^{2}[\cos (20)]^{2} d o \\
& A=0.3926
\end{aligned}
$$

7. Write but do not solve, an expression that will give the area enclosed by one petal of the 3 petaled rose $r=4 \cos 3 \theta$ found in the first and fourth quadrant.

$$
\begin{aligned}
& \theta=4 \cos (3 \theta) \\
& \theta=\cos (30) \\
& 3 \theta=\pi / 2,3 \pi / 2,5 \pi / 2, \ldots \\
& \theta=\pi / 6,3 \pi / 6,5 \pi / 6, \ldots
\end{aligned}
$$

8. Write but do not solve an expression that can be used to find the area of the shaded region of the polar curve

$$
\begin{aligned}
& r=3-2 \sin \theta \\
& 1=3-2 \sin \theta \\
& 1=\sin \theta \\
& \theta=\frac{\pi}{2}
\end{aligned}
$$

$$
5=3-2 \sin \theta
$$

$$
-1=\sin \theta
$$

$$
\theta=3 \pi / 2
$$

9. Write but do not solve an expression to find the area of the shaded region of the polar curve $r=\cos 2 \theta$.

$$
\begin{aligned}
& 0=\cos (2 \theta) \\
& 2 \theta=\pi / 2,3 \pi, 5 \pi / 2,7 \pi / 2, \frac{9 \pi}{2}, \ldots \\
& \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, 5 \frac{5 \pi}{4}, \frac{7 \pi}{4}, \frac{9 \pi}{4}, \cdots \\
& \quad 1 / 2 \int_{3 \pi / 4}^{5 / 4}[\cos (2 \theta)]^{2} d \theta
\end{aligned}
$$

10. Find the area of the shaded region of the polar curve $r=4-6 \sin \theta$.

$$
\begin{aligned}
& 0=4-\sin \theta \\
& 2 / 3=\sin \theta \\
& \sin ^{-1}(2 / 3)=0
\end{aligned}
$$

$$
\theta_{1}=0.729727
$$

$$
\theta_{2}=\pi-\theta_{1} \approx 2.4118649
$$

$$
\frac{1}{2} \int_{\theta_{1}}^{\theta 2}[4-6 \sin \theta]^{2} d \theta=
$$

9.8 Area Bounded by a Polar Curve
11.

Let R be the region in the first quadrant that is bounded by the polar curves $r=\frac{\theta}{2}$ and $\theta=k$, where k is a constant, $0<k<\frac{\pi}{2}$, as shown in the figure above. What is the area of R in terms of k ?

Calculator active. Consider the polar curve defined by the function $r(\theta)=2 \theta \cos \theta$, where $0 \leq \theta \leq \frac{3 \pi}{2}$. The derivative of r is given by $\frac{d r}{d \theta}=2 \cos \theta-2 \theta \sin \theta$. The figure above shows the graph of r for $0 \leq \theta \leq \frac{3 \pi}{2}$.
a. Find the area of the region enclosed by the inner loop of the curve.

$2 \theta \cos \theta=0$
$\theta=(0)$ or $\theta=\frac{\pi}{2} / 3 \frac{\pi}{2}$
Checked by tracing the graph
b. For $0 \leq \theta \leq \frac{3 \pi}{2}$, find the greatest distance from any point on the graph of r to the origin. Justify your answer.
distance from origin $=r$

$$
\begin{aligned}
& r^{\prime}=2 \cos \theta-2 \theta \sin \theta=0 \\
& \theta=0.860336 \rightarrow A \\
& \theta=3.4256195 \rightarrow B
\end{aligned}
$$

c. There is a point on the curve at which the slope of the line tangent to the curve is $\frac{2}{2-\pi}$. At this point, $\frac{d y}{d \theta}=\frac{1}{2}$. Find $\frac{d x}{d \theta}$ at this point.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y^{\prime \prime}(0)}{x(0)}=\frac{\frac{1}{2}(0)}{x(0)}=\frac{2}{2-\pi} \\
& \frac{x}{2-1}=\frac{2-x}{2}=x^{\prime}(\theta) \\
& \frac{2-1}{4}=x^{\prime}(\theta)
\end{aligned}
$$

