9．9 Area Bounded by Two Polar Curves

1．What is the total area between the polar curves $r=2 \sin 3 \theta$ and $r=5 \sin 3 \theta$ ．

2．The figure to the right shows the graphs of the polar curves $r=2 \cos ^{2} \theta$ and $r=4 \cos ^{2} \theta$ for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ ．Which of the following integrals gives the area of the region bounded between the two polar curves？

A． $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
B． $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 6 \cos ^{4} \theta d \theta$

C． $\int_{-\frac{\pi}{2}}^{\frac{\pi}{\pi}} 2 \cos ^{4} \theta d \theta$
D． $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos ^{2} \theta d \theta$
3．Find the total area in the first quadrant of the common interior of $r=4 \sin 2 \theta$ and $r=2$ ．

4．Find the area of the common interior of the polar graphs $r=3 \cos \theta$ and $r=3 \sin \theta$ ．

5．Let S be the region in the $1^{\text {st }}$ Quadrant bounded above by the graph of the polar curve $r=\cos \theta$ and bounded below by the graph of the polar curve $r=\frac{7}{2} \theta$ ，as shown in the figure．The two curves intersect when $\theta=0.275$ ． What is the area of S ？

T0E＇0 ¢	$\frac{v}{6}-\frac{8}{146} 10 \pm 8 Z^{\prime}$ T \dagger	LSザて＇$¢$	G｀${ }^{\text {c }}$	E6t＇9I＇I

