
9.9 Area Bounded by Two Polar Curves

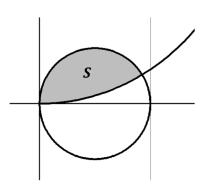
1. What is the total area between the polar curves $r = 2 \sin 3\theta$ and $r = 5 \sin 3\theta$.

2. The figure to the right shows the graphs of the polar curves $r = 2\cos^2\theta$ and $r = 4\cos^2\theta$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Which of the following integrals gives the area of the region bounded between the two polar curves?

A.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \ d\theta$$

Calculus

B.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 6 \cos^4 \theta \ d\theta$$


C.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^4 \theta \ d\theta$$

A.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$
B.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 6 \cos^4 \theta \, d\theta$$
C.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^4 \theta \, d\theta$$
D.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^2 \theta \, d\theta$$

3. Find the total area in the first quadrant of the common interior of $r = 4 \sin 2\theta$ and r = 2.

4. Find the area of the common interior of the polar graphs $r = 3\cos\theta$ and $r = 3\sin\theta$.

5. Let S be the region in the 1st Quadrant bounded above by the graph of the polar curve $r = \cos \theta$ and bounded below by the graph of the polar curve $r = \frac{7}{2}\theta$, as shown in the figure. The two curves intersect when $\theta = 0.275$. What is the area of S?

