9.9 Area Bounded by Two Polar Curves

1. What is the total area between the polar curves $r=2 \sin 3 \theta$ and $r=3 \sin 3 \theta$.
2. The figure shows the graphs of the polar curves $r=3 \cos ^{2} \theta$ and $r=$ $5 \cos ^{2} \theta$ for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Which of the following integrals gives the area of the region bounded between the two polar curves?
A. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos ^{4} \theta d \theta$
B. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos ^{2} \theta d \theta$
C. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{\pi}} 2 \cos ^{2} \theta d \theta$
D. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos ^{4} \theta d \theta$
3. Find the total area in the first quadrant of the common interior of $r=6 \sin 2 \theta$ and $r=3$.
4. Find the area of the common interior of the polar graphs $r=5 \cos \theta$ and $r=5 \sin \theta$.
5. Let S be the region in the $1^{\text {st }}$ Quadrant bounded above by the graph of the polar curve $r=2 \cos \theta$ and bounded below by the graph of the polar curve $r=2 \theta$, as shown in the figure above. The two curves intersect when $\theta=0.739$. What is the area of S ?

