Calculus

9.9 Area Bounded by Two Polar Curves

Recall area bounded by a polar curve: $A=$

Things to watch for when using more than one polar curve for area.

- Points of intersection
- Symmetry

1. Find the area of the region common to the polar curve $r=4 \cos \theta$ and $r=2 \sin \theta$.
2. Find the area of the common region to the polar graphs of $r=2$ and $r=2-2 \sin \theta$.

3. Find the area of the region common to the two polar curves $r=-6 \cos \theta$ and $r=2-2 \cos \theta$.

Area Bounded by Two Polar Curves

$$
A=
$$

$$
A=
$$

4. Find the area of the region bounded by the two polar curves $r=1$ and $r=1-\cos \theta$ as shown in the graph below.

9.9 Area Bounded by Two Polar Curves

Calculus

1. Find the area of the common interior of the polar graphs $r=4 \sin 2 \theta$ and $r=2$.
2. Find the area of the common interior of the polar graphs $r=2 \cos \theta$ and $r=2 \sin \theta$.
3. The polar curves $r=2-2 \cos \theta$ and $r=2+$ $2 \cos \theta$ are shown below.

Which of the following gives the total area of the shaded regions?
A. $\int_{0}^{\pi}(2+2 \cos \theta)^{2} d \theta$
B. $\int_{\pi / 2}^{\pi}(2+2 \cos \theta)^{2} d \theta$
C. $8 \int_{0}^{\frac{\pi}{2}}(1-\cos \theta)^{2} d \theta$
D. $\int_{0}^{\frac{\pi}{2}}\left((2-2 \cos \theta)^{2}+(2+2 \cos \theta)^{2}\right) d \theta$
4. Let R be the region in the first quadrant that is bounded above by the polar curve $r=5 \cos \theta$ and below by the line $\theta=1$, as shown in the figure below. What is the area of R ?

5. The figure below shows the graphs of the polar curves $r=3 \cos 3 \theta$ and $r=3$. What is the sum of the areas of the shaded regions?

7. Find the area inside the polar curve $r=2 \cos \theta$ and outside the polar curve $r=1$.
6. Let S be the region in the $1^{\text {st }}$ Quadrant bounded above by the graph of the polar curve $r=\cos \theta$ and bounded below by the graph of the polar curve $r=\frac{5}{2} \theta$, as shown in the figure above. The two curves intersect when $\theta=0.373$. What is the area of S ?

8. Write an integral expression that represents the area of the region outside the polar curve $r=3+2 \sin \theta$ and inside the polar curve $r=2$.
9. What is the total area outside the polar curve $r=5 \cos 2 \theta$ and inside the polar curve $r=5$?
10. Find the area of the common interior of the polar curves $r=4 \sin \theta$ and $r=2$.

9.9 Area Bounded by Two Polar Curves

11.

θ	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
r	1	3	5	4	2

No calculator! Let R be the region bounded by the graph of the polar curve $r=f(\theta)$ and the lines $\theta=0$ and $\theta=1$, as shaded in the figure above. The table above gives values of the polar function $r=f(\theta)$ at selected values of θ. What is the approximation for the area of region R using a right Riemann sum with the four subintervals indicated by the data in the table?

