9.9 Area Bounded by Two Polar Curves

Write your questions and thoughts here!

Recall area bounded by a polar curve: A =

Things to watch for when using more than one polar curve for area.

- Points of intersection
- Symmetry
- 1. Find the area of the region common to the polar curve $r = 4\cos\theta$ and $r = 2\sin\theta$.

2. Find the area of the common region to the polar graphs of r=2 and $r=2-2\sin\theta$.

3. Find the area of the region common to the two polar curves $r = -6\cos\theta$ and $r = 2 - 2\cos\theta$.

Area Bounded by Two Polar Curves

A =

A =

4. Find the area of the region bounded by the two polar curves r = 1 and $r = 1 - \cos \theta$ as shown in the graph below.

9.9 Area Bounded by Two Polar Curves

Calculus

1. Find the area of the common interior of the polar graphs $r = 4 \sin 2\theta$ and r = 2.

2. Find the area of the common interior of the polar graphs $r = 2 \cos \theta$ and $r = 2 \sin \theta$.

3. The polar curves $r = 2 - 2 \cos \theta$ and $r = 2 + 2 \cos \theta$ are shown below.

Which of the following gives the total area of the shaded regions?

A.
$$\int_0^{\pi} (2 + 2 \cos \theta)^2 d\theta$$

B.
$$\int_{\pi/2}^{\pi} (2 + 2\cos\theta)^2 d\theta$$

C.
$$8 \int_0^{\frac{\pi}{2}} (1 - \cos \theta)^2 d\theta$$

D.
$$\int_0^{\frac{\pi}{2}} ((2 - 2\cos\theta)^2 + (2 + 2\cos\theta)^2) d\theta$$

4. Let R be the region in the first quadrant that is bounded above by the polar curve $r = 5 \cos \theta$ and below by the line $\theta = 1$, as shown in the figure below. What is the area of R?

5. The figure below shows the graphs of the polar curves $r = 3\cos 3\theta$ and r = 3. What is the sum of the areas of the shaded regions?

6. Let *S* be the region in the 1st Quadrant bounded above by the graph of the polar curve $r = \cos \theta$ and bounded below by the graph of the polar curve $r = \frac{5}{2}\theta$, as shown in the figure above. The two curves intersect when $\theta = 0.373$. What is the area of *S*?

- 7. Find the area inside the polar curve $r = 2 \cos \theta$ and outside the polar curve r = 1.
- 8. Write an integral expression that represents the area of the region outside the polar curve $r = 3 + 2 \sin \theta$ and inside the polar curve r = 2.

- 9. What is the total area outside the polar curve $r = 5\cos 2\theta$ and inside the polar curve r = 5?
- 10. Find the area of the common interior of the polar curves $r = 4 \sin \theta$ and r = 2.

11.

θ	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
r	1	3	5	4	2

No calculator! Let R be the region bounded by the graph of the polar curve $r = f(\theta)$ and the lines $\theta = 0$ and $\theta = 1$, as shaded in the figure above. The table above gives values of the polar function $r = f(\theta)$ at selected values of θ . What is the approximation for the area of region R using a right Riemann sum with the four subintervals indicated by the data in the table?