


- 5. The figure below shows the graphs of the polar curves $r = 3 \cos 3\theta$ and r = 3. What is the sum of the areas of the shaded regions?
- and bounded below by the graph of the polar curve $r = \frac{5}{2}\theta$, as shown in the figure above. The two 1 $C_{ircle} = \tilde{I}(3)$ curves intersect when $\theta = 0.373$. What is the area of S? - 91 One petal = S $\frac{1}{2}\sum_{k} \frac{1}{k} \left[3\cos(3\theta) \right] d\theta$ Circle - 3 petals 20.373 [5] do +2 (5) (0.373 [coso] do $9\pi - \frac{3}{2} \int_{T}^{k} [3\cos(30)] d0$ 21.2057 0.2686 Find the area inside the polar curve $r = 2 \cos \theta$ and 8. Write an integral expression that represents the area outside the polar curve r = 1. of the region outside the polar curve $r = 3 + 2 \sin \theta$ 2030=1 and inside the polar curve r = 2. (058=3 3+2610=2 25,10=-) 5,10=-1 0=1/2 0=<u>5</u>, 前加 2 5 [2 coso] do - 2 5 [1] do [2 - [3+25ine] 1.913 20 9. What is the total area outside the polar curve 10. Find the area of the common interior of the polar $r = 5 \cos 2\theta$ and inside the polar curve r = 5? curves $r = 4 \sin \theta$ and r = 2. 45ino=2 Sine=3 0=7; $\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \left[4 \sin^2 d + \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} d + \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \left[4 \sin^2 d + \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \left[4 \sin^2 d + \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} \frac{1}{2} d + \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} \frac{1}{2}$ $T(5)^2 - \frac{1}{2} \int \left[5\cos(2\theta) \right] d\theta$ 39.270 4,913

6. Let S be the region in the 1^{st} Quadrant bounded

above by the graph of the polar curve $r = \cos \theta$

11.

θ	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
r	1	3	5	4	2

No calculator! Let *R* be the region bounded by the graph of the polar curve $r = f(\theta)$ and the lines $\theta = 0$ and $\theta = 1$, as shaded in the figure above. The table above gives values of the polar function $r = f(\theta)$ at selected values of θ . What is the approximation for the area of region *R* using a right Riemann sum with the four subintervals indicated by the data in the table?

Area of each sector =
$$\frac{1}{20}r^{2}$$

 $\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{3}{5}\cdot\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{5}{5}+\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{2}$
 $\frac{1}{8}\cdot9+\frac{1}{8}\cdot25+\frac{1}{8}\cdot16+\frac{1}{8}\cdot4$
 $\frac{54}{8}$
 $\frac{27}{4}$