End of Unit 10 CA – Infinite Sequences and Series

1. Let f be the function defined by $f(x) = 3x \cos x$. What is the coefficient of x^5 in the Taylor Series for f about x = 0?

2. Determine the number of terms required to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4}$ with an error less than 0.0001.

(A) 7 (B) 8 (C) 9 (D) 10

3. Find the third-degree Taylor Polynomial for the function $f(x) = \sqrt{x}$ about x = 2.

4. What is the coefficient of x^3 in the Maclaurin series for the function $\left(\frac{1}{1-x}\right)^2$?

5. The function f has derivatives of all orders for all real numbers and $f^{(4)}(x) \le \frac{1}{2}$. If a third-degree Taylor Polynomial for f about x = 0 is used to approximate f on [0,1]. What is the Lagrange error bound for the maximum error on interval [0,1] in the approximation of f(1)?

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{8}$ (C) $\frac{1}{24}$ (D) $\frac{1}{48}$

6. What is the alternating series error bound, if the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{5n+2}$ is approximated by the partial sum with 15 terms?

(A)
$$\frac{1}{15}$$
 (B) $\frac{1}{16}$ (C) $\frac{1}{77}$ (D) $\frac{1}{82}$

7.
$$\max_{0 \le x \le 2} |f^{(5)}(x)| = 3.6$$
 $\max_{0 \le x \le 2} |f^{(6)}(x)| = 8.1$ $\max_{0 \le x \le 2} |f^{(7)}(x)| = 11.3$

Let P(x) be the fifth-degree Taylor Polynomial for a function f about x = 0. Information about the maximum of the absolute value of selected derivatives of f over the interval $0 \le x \le 2$ is given in the table above. What is the smallest value of k for which the Lagrange error bound guarantees that $|f(0.2) - P(0.2)| \le k$?

8. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-3)^n}{n3^n}.$

9. What is the coefficient of $(x - 2)^4$ in the Taylor Polynomial for $f(x) = e^{4x}$ about x = 2?

10. A series expansion for function $f(x) = e^{3x}$ is given by

(A)
$$1 + 3x + \frac{9x^2}{2} + \frac{9x^3}{2} + \cdots$$

(B) $1 + 3x + \frac{3x^2}{2!} + \frac{3x^3}{3!} + \cdots$
(C) $1 - 3x + \frac{9x^2}{2} - \frac{9x^3}{2} + \cdots$
(D) $1 - 3x + \frac{3x^2}{2!} - \frac{3x^3}{3!} + \cdots$

11. Let f be the function with initial condition f(0) = 0 and derivative $f'(x) = e^{3x}$. Write the first four nonzero terms and the general term of the Maclaurin series for f.

12. Find the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{6^n}.$

Answers to	End of	Unit 10	Corrective	Assignment
------------	--------	---------	------------	------------

1. $\frac{1}{8}$	2. D		3. $f(x) = \sqrt{2} + \frac{\sqrt{2}}{4}(x-2) - \frac{\sqrt{2}}{32}(x-2)^2 + \frac{\sqrt{2}}{128}(x-2)^3$				
4. 4	5. D			6. D			7. 7.2×10^{-7}
$8. 0 < x \le 6$		9. $\frac{32}{3}$	e ⁸ 3			10. A	
11. $f(x) = x + \frac{3}{2}x^2 + \frac{3}{2}x^3 + \frac{9}{8}x^4 + \dots + \frac{3^n x^{n+1}}{(n+1)n!}$					12. 6		