Name:
Date:

## End of Unit 10 CA - Infinite Sequences and Series

1. Let $f$ be the function defined by $f(x)=3 x \cos x$. What is the coefficient of $x^{5}$ in the Taylor Series for $f$ about $x=0$ ?
2. Determine the number of terms required to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$ with an error less
than 0.0001 .
(A) 7
(B) 8
(C) 9
(D) 10
3. Find the third-degree Taylor Polynomial for the function $f(x)=\sqrt{x}$ about $x=2$.
4. What is the coefficient of $x^{3}$ in the Maclaurin series for the function $\left(\frac{1}{1-x}\right)^{2}$ ?
5. The function $f$ has derivatives of all orders for all real numbers and $f^{(4)}(x) \leq \frac{1}{2}$. If a third-degree Taylor Polynomial for $f$ about $x=0$ is used to approximate $f$ on $[0,1]$. What is the Lagrange error bound for the maximum error on interval $[0,1]$ in the approximation of $f(1)$ ?
(A) $\frac{1}{2}$
(B) $\frac{1}{8}$
(C) $\frac{1}{24}$
(D) $\frac{1}{48}$
6. What is the alternating series error bound, if the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{5 n+2}$ is approximated by the partial sum
with 15 terms?
(A) $\frac{1}{15}$
(B) $\frac{1}{16}$
(C) $\frac{1}{77}$
(D) $\frac{1}{82}$
7. $\max _{0 \leq x \leq 2}\left|f^{(5)}(x)\right|=3.6 \quad \max _{0 \leq x \leq 2}\left|f^{(6)}(x)\right|=8.1 \quad \max _{0 \leq x \leq 2}\left|f^{(7)}(x)\right|=11.3$

Let $P(x)$ be the fifth-degree Taylor Polynomial for a function $f$ about $x=0$. Information about the maximum of the absolute value of selected derivatives of $f$ over the interval $0 \leq x \leq 2$ is given in the table above. What is the smallest value of $k$ for which the Lagrange error bound guarantees that $|f(0.2)-P(0.2)| \leq k$ ?
8. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-3)^{n}}{n 3^{n}}$.
9. What is the coefficient of $(x-2)^{4}$ in the Taylor Polynomial for $f(x)=e^{4 x}$ about $x=2$ ?
10. A series expansion for function $f(x)=e^{3 x}$ is given by
(A) $1+3 x+\frac{9 x^{2}}{2}+\frac{9 x^{3}}{2}+\cdots$
(B) $1+3 x+\frac{3 x^{2}}{2!}+\frac{3 x^{3}}{3!}+\cdots$
(C) $1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\cdots$
(D) $1-3 x+\frac{3 x^{2}}{2!}-\frac{3 x^{3}}{3!}+\cdots$
11. Let $f$ be the function with initial condition $f(0)=0$ and derivative $f^{\prime}(x)=e^{3 x}$. Write the first four nonzero terms and the general term of the Maclaurin series for $f$.
12. Find the radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{6^{n}}$.

## Answers to End of Unit 10 Corrective Assignment

| 1. $\frac{1}{8}$ | 2. D | 3. $f(x)=\sqrt{2}+\frac{\sqrt{2}}{4}(x-2)-\frac{\sqrt{2}}{32}(x-2)^{2}+\frac{\sqrt{2}}{128}(x-2)^{3}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4. 4 | 5. D | 6. D | 7. $7.2 \times 10^{-7}$ |
| 8. $0<x \leq 6$ | 9. $\frac{32 e^{8}}{3}$ | 10. A |  |
| 11. $f(x)=x+\frac{3}{2} x^{2}+\frac{3}{2} x^{3}+\frac{9}{8} x^{4}+\cdots+\frac{3^{n} x^{n+1}}{(n+1) n!}$ | 12. 6 |  |  |

