Name:
Date:

Mid-Unit 10 CA - Infinite Sequences and Series

1. The infinite series $\sum_{n=1}^{\infty} a_{n}$ has nth partial sum $S_{n}=\frac{4^{n}-1}{4^{n+1}}$ for $n \geq 1$. What is the sum of the series?
2. Which of the following series diverge?
I. $\sum_{n=1}^{\infty} \frac{1}{n^{2}(n+3)}$
II. $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n+1}}{3^{n}}$
III. $\sum_{n=1}^{\infty} \frac{n!}{n 4^{n}}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
3. The n th-Term Test can be used to determine divergence for which of the following series?
I. $\sum_{n=1}^{\infty} \frac{2 n+1}{1-n}$
II. $\sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^{n}$
III. $\sum_{n=1}^{\infty} \frac{2 n(n-1)^{2}}{4 n^{2}-3 n^{3}}$
(A) I and II only
(B) II and III only
(C) I and III only
(D) I, II, and III
4. If b and t are real numbers such that $0<|t|<|b|$, what is the sum of $b^{2} \sum_{n=0}^{\infty}\left(\frac{t^{2}}{b^{2}}\right)^{n}$?
5. Explain why the Integral Test does not apply to the series $\sum_{n=1}^{\infty} \frac{3}{n^{-2}}$.
6. For what values of p will the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{3 p+1}}$ converge?
7. Calculator active. Which of the following series matches the following sequence of partial sums 0.1667 , $0.3333,0.4833,0.6167,0.7357, \ldots$?
(A) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
(B) $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}$
(C) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$
(D) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+3)}$
8. For what values of x is the series $\sum_{n=1}^{\infty} \frac{(7 x-3)^{n}}{n}$ conditionally convergent?
(A) $x=\frac{2}{7}$
(B) $x=\frac{4}{7}$
(C) $x>\frac{4}{7}$
(D) $\quad x<\frac{2}{7}$
9. Which of the following series can be used with the Limit Comparison Test to determine whether the series $\sum_{n=1}^{\infty} \frac{3 n+2}{n^{3}-2 n}$ converges or diverges?
(A) $\sum_{n=1}^{\infty} \frac{1}{n}$
(B) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(C) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(D) $\sum_{n=1}^{\infty} \frac{1}{n^{3}-2 n}$
10. Verify that the infinite series $\sum_{n=1}^{\infty} \frac{7^{n+1}-2}{7^{n+2}}$ diverges by using the n th-Term Test for Divergence. Show the
value of the limit.
11. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{2^{n}}{9^{n}+n}$ is true?
(A) The series diverges by the nth Term Test.
(B) The series diverges by comparison with $\sum^{\infty} \frac{1}{n}$.
(C) The series converges by comparison with $\sum_{n=1}^{\infty} \frac{2^{n}}{9^{n}}$.
(D) The series converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$.
12. Which of the following series converge by the Alternating Series Test?
I. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$
II. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$
III. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{\pi}{e}\right)^{n}$
A. I only
B. I and II only
C. I and III only
D. I, II, and III
13. Which of the following series is absolutely convergent?
I. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n^{4}}}$
II. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$
III. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
(A) I only
(B) I and II only
(C) I and III only
(D) I, II, and III
14. Use the Integral test to determine if the series $\sum_{n=1}^{\infty} \frac{3 n^{2}}{n^{3}+1}$ converges or diverges.
15. Which of the following statements are true about the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n+1}{n}$?
I. $\quad a_{n+1} \leq a_{n}$ for all $n \geq 1$.
II. $\lim _{n \rightarrow \infty} a_{n} \neq 0$
III. The series converges by the Alternating Series Test
A. I only
B. I and II only
C. II and III only
D. I, II, and III
16. What are all values of $x>0$ for which the series $\sum_{n=1}^{\infty} \frac{n^{2} x^{n+1}}{7^{n}}$ converges.
17. Which of the following is a convergent p-series?
(A) $\sum_{n=1}^{\infty} n^{4}$
(B) $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$
(C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2}}}$
(D) $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}\right)^{\frac{1}{2}}$
18. Consider the series $\sum_{n=1}^{\infty} a_{n}$. If $\frac{a_{n+1}}{a_{n}}=\frac{1}{2}$ for all integers $n \geq 1$, and $\sum_{n=1}^{\infty} a_{n}=64$, then $a_{1}=$?

Answers to Mid-Unit 10 Corrective Assignment

| 1. $\frac{1}{4}$ | 2. C | 3. C | 4. $\frac{b^{4}}{b^{2}-t^{2}}$ | 5. $f(n)$ is not a decreasing function for $n \geq 1$. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6. $p>0$ | 7. B | 8. A | 9. B | |
| 10. Diverges by n th-Term Test, $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{7}$ | 11. C | 12. B | 13. B | |
| 14. $\int_{1}^{\infty} f(x) d x=\infty$, Series Diverges | 15. B | 16. $x<7$ | 17. D | 18. 32 |

