Date:\_\_\_

## Mid-Unit 10 CA – Infinite Sequences and Series

1. The infinite series 
$$\sum_{n=1}^{\infty} a_n$$
 has *n*th partial sum  $S_n = \frac{4^{n-1}}{4^{n+1}}$  for  $n \ge 1$ . What is the sum of the series?

2. Which of the following series diverge?

I. 
$$\sum_{n=1}^{\infty} \frac{1}{n^2(n+3)}$$
 II.  $\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$  III.  $\sum_{n=1}^{\infty} \frac{n!}{n4^n}$ 



3. The nth-Term Test can be used to determine divergence for which of the following series?

I. 
$$\sum_{n=1}^{\infty} \frac{2n+1}{1-n}$$
 II.  $\sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^n$  III.  $\sum_{n=1}^{\infty} \frac{2n(n-1)^2}{4n^2-3n^3}$ 

(A) I and II only

(B) II and III only

(C) I and III only

(D) I, II, and III

4. If *b* and *t* are real numbers such that 0 < |t| < |b|, what is the sum of  $b^2 \sum_{n=0}^{\infty} \left(\frac{t^2}{b^2}\right)^n$ ?

5. Explain why the Integral Test does not apply to the series  $\sum_{n=1}^{\infty} \frac{3}{n^{-2}}$ .

6. For what values of p will the infinite series 
$$\sum_{n=1}^{\infty} \frac{1}{n^{3p+1}}$$
 converge?

7. **Calculator active.** Which of the following series matches the following sequence of partial sums 0.1667, 0.3333, 0.4833, 0.6167, 0.7357, ...?

(A) 
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$
 (B)  $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}$  (C)  $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$  (D)  $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+3)}$ 

8. For what values of x is the series 
$$\sum_{n=1}^{\infty} \frac{(7x-3)^n}{n}$$
 conditionally convergent?

(A) 
$$x = \frac{2}{7}$$
 (B)  $x = \frac{4}{7}$  (C)  $x > \frac{4}{7}$  (D)  $x < \frac{2}{7}$ 

9. Which of the following series can be used with the Limit Comparison Test to determine whether the series  $\sum_{n=1}^{\infty} \frac{3n+2}{n^3-2n}$  converges or diverges?

(A) 
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (B)  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  (C)  $\sum_{n=1}^{\infty} \frac{1}{n^3}$  (D)  $\sum_{n=1}^{\infty} \frac{1}{n^3 - 2n}$ 

- 10. Verify that the infinite series  $\sum_{n=1}^{\infty} \frac{7^{n+1}-2}{7^{n+2}}$  diverges by using the *n*th-Term Test for Divergence. Show the
- 11. Which of the following statements about the series  $\sum_{n=1}^{\infty} \frac{2^n}{9^n + n}$  is true?
  - (A) The series diverges by the *n*th Term Test.
  - (B) The series diverges by comparison with  $\sum_{n=1}^{\infty} \frac{1}{n}$ .
  - (C) The series converges by comparison with  $\sum_{n=1}^{\infty} \frac{2^n}{9^n}$ .
  - (D) The series converges by comparison with  $\sum_{n=1}^{\infty} \frac{1}{9^n}$ .
- 12. Which of the following series converge by the Alternating Series Test?

I. 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 II.  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$  III.  $\sum_{n=1}^{\infty} (-1)^n \left(\frac{\pi}{e}\right)^n$ 

13. Which of the following series is absolutely convergent?

I. 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n^4}}$$
 II.  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$  III.  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 

| (A) I only | (B) I and II only | (C) I and III only | (D) I, II, and III |
|------------|-------------------|--------------------|--------------------|
|            |                   |                    |                    |

14. Use the Integral test to determine if the series  $\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 1}$  converges or diverges.

15. Which of the following statements are true about the series  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{n}$ ? I.  $a_{n+1} \le a_n$  for all  $n \ge 1$ . II.  $\lim_{n \to \infty} a_n \ne 0$ III. The series

- III. The series converges by the Alternating Series Test

C. II and III only

16. What are all values of x > 0 for which the series  $\sum_{n=1}^{\infty} \frac{n^2 x^{n+1}}{7^n}$  converges.

17. Which of the following is a convergent *p*-series?

(A) 
$$\sum_{n=1}^{\infty} n^4$$
 (B)  $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$  (C)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$  (D)  $\sum_{n=1}^{\infty} \left(\frac{1}{n^3}\right)^{\frac{1}{2}}$ 

18. Consider the series 
$$\sum_{n=1}^{\infty} a_n$$
. If  $\frac{a_{n+1}}{a_n} = \frac{1}{2}$  for all integers  $n \ge 1$ , and  $\sum_{n=1}^{\infty} a_n = 64$ , then  $a_1 = ?$ 

| 1. $\frac{1}{4}$                                                               | 2. C 3. C |       |   | $\frac{b^4}{b^2 - t^2}$ |             | 5. $f(n)$ is not a decreasing function for $n \ge 1$ |         |  | on for $n \ge 1$ . |        |  |
|--------------------------------------------------------------------------------|-----------|-------|---|-------------------------|-------------|------------------------------------------------------|---------|--|--------------------|--------|--|
| 6. $p > 0$                                                                     |           | 7. B  |   |                         | 8.          | A                                                    |         |  | 9. B               |        |  |
| 10. Diverges by <i>n</i> th-Term Test, $\lim_{n \to \infty} a_n = \frac{1}{7}$ |           |       |   | 11. C 1                 |             |                                                      | 12. B 1 |  | 13.                | В      |  |
| 14. $\int_{1}^{\infty} f(x) dx = \infty$ , Series Diverges 13.                 |           | 15. B | В |                         | 16. $x < 7$ |                                                      | 17. D   |  |                    | 18. 32 |  |

## Answers to Mid-Unit 10 Corrective Assignment