
Name:

Date:

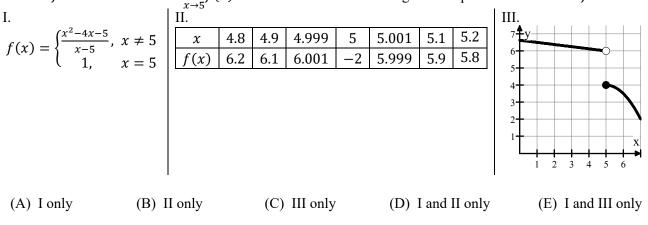
Mid-Unit 1 Corrective Assignment – Limits and Continuity

A child's height can be modeled by the function h, where h(a) gives the height in inches and a gives the child's age in years for $0 \le a \le 18$. The graph of the function h is shown to the right.

- 1. Draw a tangent line at a = 9.
- 2. Give a rough estimate of the instantaneous rate of change at a = 9.

3. Give an example of how to calculate a rate of change that would give a close estimate to the rate of change for a = 17.

A house loan is being paid off each month. The interest being paid each month m can be modeled by I, where I(m) is the interest payment and m is the month for $0 \le m \le 360$.


4. What does <i>I</i> (3) rep		does $\frac{I(3)-I(1)}{3-1}$ represent?	6. What does $\frac{I(4) - I(3.999)}{4 - 3.999}$ represent?	
Give the value of each	statement. If the value	e does not exist, write "d	loes not exist" or "undefined."	
7. a. $\lim_{x \to 3^{-}} f(x) =$	b. <i>f</i> (−1) =	$\lim_{x \to -3} f(x) =$		
d. $\lim_{x \to -1} f(x) =$	e. $f(-3) =$	$f. \lim_{x \to 3^+} f(x) =$		
g. <i>f</i> (3) =	h. $\lim_{x \to 0} f(x) =$	i. <i>f</i> (-4) =		4 1 ⁵
	unction h that satisfies	all of the following cond	litions.	
8. a. $\lim_{x \to 3} h(x) = h(-$	-2) = 1		6 	
b. <i>h</i> is constant on $-2 < x < 3$ and decreasing everywhere else.				
c. $h(3)$ is undefined		6 7		
d. $\lim_{x \to -2^{-}} h(x) < x$	$\lim_{x\to -2^+} h(x)$		-2	

9. According to the table, what is value of $\lim_{x \to -3} f(x)$?

x	-3.4	-3.001	-2.999	-2.7
f(x)	7.7	7.999	8.001	8.18

$\left(x^2\right)$	$ \begin{array}{ll} -1, & x \leq 1 \\ \text{if } x & 1 < x \leq e, \text{ find the followin} \\ \hline x, & x > e \end{array} $	a. $\lim_{x \to e^-} f(x) =$	b. $\lim_{x \to 1} f(x) =$
10. If $f(x) = \{ \ln x \}$	$1 \times 1 < x \le e$, find the following	g:	
(√	\overline{x} , $x > e$	c. $\lim_{x \to e} f(x) =$	d. $f(e) =$

Evaluate the limit.			
11. $\lim_{x \to 1} \frac{x^2 - 2x - 15}{x + 3}$	12. $\lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$		13. $\lim_{x \to -2} \frac{x+2}{x^2-4}$
14. $\lim_{x \to 0} \frac{1 - \cos(2x)}{5x}$		15. $\lim_{x \to 2} \frac{\sqrt{x+2}-2}{x-2}$	
16. $\lim_{x \to 0} \frac{\frac{1}{x+8} - \frac{1}{8}}{x}$		17. $\lim_{x \to -4^+} \frac{ x+4 }{x+4}$	

18. Let f be a function where $\lim_{x\to 5} f(x) = 6$. Which of the following could represent the function f?

19. If f is a piecewise linear function such that $\lim_{x\to 9} f(x)$ does not exist, which of the following could be representative of the function f?

I.

$$f(x) = \begin{cases} 2x - 1, \ x < 9 \\ \frac{1}{3}x + 14, \ x > 9 \end{cases} \qquad \boxed{\begin{array}{c} II. \\ \hline x & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline f(x) & 3 & \frac{10}{3} & \frac{11}{3} & -3 & 8 & 12 & 16 \\ \hline \end{array}} \qquad \boxed{\begin{array}{c} III. \\ \hline y \\ \hline$$

- 20. Let f and g be the functions defined by $f(x) = \frac{8-8\cos x}{x^2}$ and $g(x) = x^2 \cos\left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0?
 - I. $4 x^2 \le f(x) \le 4$ II. $-x^2 1 \le g(x) \le 1 + x^2$ III. $-x^2 \le g(x) \le x^2$

(A) I only (B) II only (C) III only (D) I and II only (E) I and III only

21. The function f is continuous and increasing for $x \ge 0$. The table gives values of f at selected values of x.

Approximate the value of $\lim_{x \to 7} 5e^{f(x)}$.

x	6.5	6.999	7.001	7.5
f(x)	-6.5	-6.001	-5.999	-5.5

1. See graph. Straight line at $a = 9$.	2. \approx 5 inc	hes per year	.)-a(16.999) 7-16.999	4. The interest paid on the 3 rd month.
change of interest at which being paid between payment		hate of the rate in the interest it is changing t th month.	7a. 4 7d. 2 7g. 4	7d. DN 7e. 1 7h. 3	E 7c. 4 7f2 7i. 3
8. One possible graph:		9. 8		10a. 1 10b. 0 10c. DNE 10d. 1	114
	4 5 0	12. 6		$13\frac{1}{4}$	14. 0
		15. $\frac{1}{4}$		$16\frac{1}{64}$	17. 1
18. D	19. C		20. E		21. $5e^{-6} = \frac{5}{e^6}$

ANSWERS to Mid-Unit 1 Corrective Assignment