Mid-Unit 1 Corrective Assignment - Limits and Continuity

A child's height can be modeled by the function h, where $h(a)$ gives the height in inches and a gives the child's age in years for $0 \leq a \leq 18$. The graph of the function h is shown to the right.

1. Draw a tangent line at $a=9$.
2. Give a rough estimate of the instantaneous rate of change at $a=9$.

3. Give an example of how to calculate a rate of change that would give a close

Years estimate to the rate of change for $a=17$.

A house loan is being paid off each month. The interest being paid each month m can be modeled by I, where $I(m)$ is the interest payment and m is the month for $0 \leq m \leq 360$.
4. What does $I(3)$ represent?
5. What does $\frac{I(3)-I(1)}{3-1}$ represent?
6. What does $\frac{I(4)-I(3.999)}{4-3.999}$ represent?

Give the value of each statement. If the value does not exist, write "does not exist" or "undefined." 7.
a. $\lim _{x \rightarrow 3^{-}} f(x)=$
b. $f(-1)=$
c. $\lim _{x \rightarrow-3} f(x)=$
d. $\lim _{x \rightarrow-1} f(x)=$
e. $f(-3)=$
f. $\lim _{x \rightarrow 3^{+}} f(x)=$
g. $f(3)=$
h. $\lim _{x \rightarrow 0} f(x)=$
i. $f(-4)=$

Sketch a graph of a function h that satisfies all of the following conditions.
8.
a. $\lim _{x \rightarrow 3} h(x)=h(-2)=1$
b. h is constant on $-2<x<3$ and decreasing everywhere else.
c. $h(3)$ is undefined.
d. $\lim _{x \rightarrow-2^{-}} h(x)<\lim _{x \rightarrow-2^{+}} h(x)$

9. According to the table, what is value of $\lim _{x \rightarrow-3} f(x)$?

x	-3.4	-3.001	-2.999	-2.7
$f(x)$	7.7	7.999	8.001	8.18

10. If $f(x)=\left\{\begin{array}{cc}x^{2}-1, & x \leq 1 \\ \ln x & 1<x \leq e, \text { find the following: } \\ \sqrt{x}, & x>e\end{array}\right.$
a. $\lim _{x \rightarrow e^{-}} f(x)=$
b. $\lim _{x \rightarrow 1} f(x)=$
c. $\lim _{x \rightarrow e} f(x)=$
d. $f(e)=$

Evaluate the limit.

11. $\lim _{x \rightarrow 1} \frac{x^{2}-2 x-15}{x+3}$

$$
\text { 12. } \lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2}
$$

13. $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-4}$
14. $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{5 x}$
15. $\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}$
16. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+8}-\frac{1}{8}}{x}$
17. $\lim _{x \rightarrow-4^{+}} \frac{|x+4|}{x+4}$
18. Let f be a function where $\lim _{x \rightarrow 5} f(x)=6$. Which of the following could represent the function f ?

I.$f(x)=\left\{\begin{array}{cc} \frac{x^{2}-4 x-5}{x-5}, & x \neq 5 \\ 1, & x=5 \end{array}\right.$	II.							
	x	4.8	4.9	4.999	5	5.001	5.1	5.2
	$f(x)$	6.2	6.1	6.001	-2	5.999	5.9	5.8

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
19. If f is a piecewise linear function such that $\lim _{x \rightarrow 9} f(x)$ does not exist, which of the following could be representative of the function f ?
I.
$f(x)=\left\{\begin{array}{r|l|l|c|c|c|c|c|}2 x-1, & x<9 \\
\frac{1}{3} x+14, & x>9\end{array}\right.$

x	6	7	8	9	10
11	12				
$f(x)$	3	$\frac{10}{3}$	$\frac{11}{3}$	-3	8
12	16				

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) none
20. Let f and g be the functions defined by $f(x)=\frac{8-8 \cos x}{x^{2}}$ and $g(x)=x^{2} \cos \left(\frac{1}{x}\right)$ for $x \neq 0$. The following inequalities are true for $x \neq 0$. State whether each inequality can be used with the squeeze theorem to find the limit of the function as x approaches 0 ?
I. $4-x^{2} \leq f(x) \leq 4$
II. $-x^{2}-1 \leq g(x) \leq 1+x^{2}$
III. $-x^{2} \leq g(x) \leq x^{2}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
21. The function f is continuous and increasing for $x \geq 0$. The table gives values of f at selected values of x.

x	6.5	6.999	7.001	7.5
$f(x)$	-6.5	-6.001	-5.999	-5.5

ANSWERS to Mid-Unit 1 Corrective Assignment

