Name: \qquad Date:
Mid-Unit 5 CA - Analytical Applications of Differentiation

1. Apply the Mean Value Theorem to $y=x^{3}-2 x^{2}-3$ to find when the instantaneous rate of change will equal the average rate of change on the interval $[0,2$]
2. Calculator active problem. The first derivative of the function f is given by $f^{\prime}(x)=\frac{\cos ^{2} x}{x}-\frac{1}{5}$. How many critical values does f have on the open interval $(0,10)$?
(A) One
(B) Three
(C) Four
(D) Five
(E) Seven
3. The graph shows the derivative of f, f^{\prime}. Identify the intervals when f is increasing and decreasing. Include a justification statement.

Increasing:
Decreasing:

4. The graph of f^{\prime}, the derivative of f, is shown. Find the x-value of each relative maximum and minimum.

Relative Maximum(s) at

Relative Minimum(s) at

5. Use the First Derivative Test to help you find the relative minimum value of $f(x)=x \ln x$. What is this value?
6. What is the absolute maximum value of the function $g(x)=2 x^{3}+\frac{3}{2} x^{2}-3 x-10$ on the closed interval $[-2,2]$.
7. Use the $2^{\text {nd }}$ Derivative Test to find the x-value(s) of all relative extrema of the function $f(x)=2 \sin x+\sqrt{2} x$ on the interval $[0,2 \pi]$. Justify your answer.
8. Calculator active problem. A local wild boar population is changing at a rate modeled by

$$
b(t)=0.04 t^{4}-0.25 t^{2}-0.02 t
$$

boar per year where t is measured in years. Is the boar population growing or shrinking at time $t=3$ years? Justify your answer.
9. Calculator active problem. The derivative of g is given by $g^{\prime}(x)=\cos \left(4 x^{2}\right)$ for $0 \leq x \leq 1.5$. On what interval(s) is g decreasing?
10. Calculator active problem. The function f has first derivative given by $f^{\prime}(x)=\sqrt{x}-\frac{e^{x}}{x}$. What is the x coordinate of the inflection point of the graph of f ?

ANSWERS to Mid-Unit 5 Corrective Assignment

1. $\frac{4}{3}$ 2. ${ }^{\text {a }}$	3. Increasing: $(-$ because $f^{\prime}(x)$ Decreasing: $(\infty$ because $f^{\prime}(x)$	$\begin{aligned} & 0) \text { and }(3, \infty) \\ & >0 \text {. } \\ & -2) \text { and }(0,3) \\ & -0 \text {. } \end{aligned}$	4. Max at $x=-2.5$ Min at $x=1$	
5. $f\left(e^{-1}\right)=-\frac{1}{e}$ Min value is $-\frac{1}{e}$.	6. $\begin{aligned} & g(-2)=-14 \\ & g(-1)=-7.5 \\ & g\left(\frac{1}{2}\right)=-10.875 \\ & g(2)=6 \end{aligned}$ Absolute maximum value of 6 .		Rel max at $x=\frac{3 \pi}{4}$ because $f^{\prime}\left(\frac{3 \pi}{4}\right)=0$ and $f^{\prime \prime}\left(\frac{3 \pi}{4}\right)<0$. Rel min at $x=\frac{5 \pi}{4}$ because $f^{\prime}\left(\frac{5 \pi}{4}\right)=0 \text { and } f^{\prime \prime}\left(\frac{5 \pi}{4}\right)>0 .$	
8. $b(3)=0.93 . b(t)$ is the rate of change, therefore the population is increasing because $b(3)>0$.		9. $0.6266<x<1.085$ and $1.401<x<1.5$		10. $x=1.1978$

