Name: Date		Corrective Assignment		
Mid-Unit 8 CA – Applications of Integration				
Find the average value of the function over the given interval.				
1. $f(x) = \frac{10}{x^2}$; [1,5]	2. Calculator active. $f(x) = e^{2x} \cos(x); [-1, 4]$			
x ²				

3. Find the area of the region bounded by the graphs $y = x^2$, y = -x, x = 0, and x = 2.

4. Calculator active. Let *R* be the region bounded by the graphs $y = 0.8x^4 - 2x^3 + 2$ and y = 2 as sown in the figure. If the line x = k divides *R* into two regions of equal area, what is the value of *k*?

rractiva

5. Set up the integral(s), with respect to x, that represent the area of the bounded region. Do not solve.

$$y = \ln x$$
, $y = 1 - x$, $y = \frac{1}{2}x - 2$, and $x = e$

6. The figure shows the graph of $y = 2\cos(x)$, and the line $y = \sqrt{2}$, for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Write a set of integrals that represents the sum of all the areas of the shaded regions. Use exact values for your boundaries, not rounded decimals.

A car is traveling on a straight road with velocity 80 ft/sec at time t = 0. For $0 \le t < 12$ seconds, the car's acceleration a(t), in ft/sec², is the piecewise linear function defined by the graph above. On the time interval $0 \le t < 12$, what is the car's absolute maximum velocity, in ft/sec, and at what timed does it occur? Justify your answer.

- 10. Let g be a continuous function with g(-2) = 4. The graph of the piecewise-linear function g'(x), the derivative of g, is shown for $-4 \le x \le 5$.
 - a. Find the x-coordinate of all points of inflections of the graph y = g(x) for $-4 \le x \le 5$.
- (-4, 6) y Graph of g'(2, 3) (-2, 0) (0, -3)
- b. Find the absolute minimum value of g on the interval $-4 \le x \le 5$. Justify your answer.

- c. Find the average rate of change of g'(x) on the interval $-4 \le x \le 5$.
- d. Find the average rate of change of g(x) on the interval $-4 \le x \le 5$.
- 11. When a grocery store opens, it has 80 pounds of apples on a table for customers to purchase. Customers remove apples from the table at a rate modeled by $f(t) = 8 + (0.7t) \cos\left(\frac{t^3}{50}\right)$ for $0 < t \le 10$ where f(t) is measured in pounds per hour and t is the number of hours after the store opened. What amount of apples are there 4 hours after the store opens?

12. At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is $18t^2$ feet per second per second. Through how many feet does the particle move during the first 2 seconds?

ANSWERS to Mid-Unit 8 Corrective Assignment

1. 2	2246.1198		3. $\int_0^2 (x^2 + x) dx = \frac{14}{3}$	
4. $\int_0^k -0.8x^4 + 2x^3 dx = \int_k^{2.5} -0.8x^4 = \int_k^{2.5} -0.8x$	$x^4 + 2x^3 dx$	5. $\int_{1}^{2} (\ln x - 1)$	3. $\int_0^2 (x^2 + x) dx = \frac{14}{3}$ $(x + x) dx + \int_2^e \left(\ln x + 2 - \frac{1}{2}x \right) dx$	
$\begin{array}{c c} 6. & \int_{-\frac{\pi}{4}}^{-\frac{\pi}{4}} (\sqrt{2} - 2\cos x) dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (2\cos x - \sqrt{2}) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sqrt{2} - 2\cos x) dx & 7. \int_{2}^{4} \left(\frac{3}{2}y - 2 - \frac{y^{2}}{4}\right) dy \\ \hline 8. & \int_{-1}^{0} (2\sqrt{y+1}) dy + \int_{0}^{3} (\sqrt{y+1} - y + 1) dy & 9. \text{ The absolute maximum must occur at } t = 5 \text{ or at an} \end{array}$				
8. $\int_{-1}^{0} (2\sqrt{y+1}) dy + \int_{0}^{3} (\sqrt{y+1} - y + 1) dy$ 9. The absolute maximum must occur at $t = 5$ or at an endpoint. $v(5) = 80 + \int_{0}^{5} a(t) dt = 160$ ft/sec. $\int_{5}^{12} a(t) dt < 0$, so $v(12) < v(5)$ Therefore, the absolute maximum velocity occurs at $t = 5$.				
10a. g' changes from decreasing to increasing at $x = 0$. g' changes from increasing to decreasing at $x = 2$.				
10b. The only sign change of g' from negative to positive in the interval is at $x = 1$. $g(-4) = 4 + \int_{-2}^{-4} g'(x) dx = 4 + (-6) = -2$ $g(1) = 4 + \int_{-2}^{1} g'(x) dx = 4 + (-3) + \left(-\frac{3}{2}\right) = -\frac{1}{2}$ $g(5) = -\frac{1}{2} + \int_{1}^{5} g'(x) dx = -\frac{1}{2} + \frac{1}{2} + \frac{9}{2} = \frac{9}{2}$ The minimum value of g for $-4 \le x \le 5$ is -2 .				
10c. $\frac{g'(5)-g'(-4)}{5-4} = \frac{0-6}{9} = -\frac{2}{3}$	10	d. $\frac{g(5)-g(-4)}{5-(-4)} =$	$\frac{\left[\frac{11}{2}\right] - \left[-2\right]}{9} = \frac{\frac{11}{2} + \frac{4}{2}}{9} = \frac{15}{18} = \frac{5}{6}$	
11. 43.461 pounds of apples	12	2. 24		