Unit 4 CA – Contextual Application of Differentiation

1. The position of a particle moving along a coordinate line is $s(t) = 2t^3 - 6t$, with s in meters and t in seconds. Find the particle's velocity and acceleration at t = 6.

Find the following. Use L'Hospital's when possible.

2. $\lim_{x \to 0} \frac{x^2}{1 - \cos(3x)}$

3. $\lim_{x \to 4} \frac{x^2 + 6x - 40}{4 - x}$

4. $\lim_{x \to 3} \frac{x^2 - 2x + 1}{x - 3}$

- 5. The figure shows the velocity v of a body moving along a coordinate line in meters per second.
 - a) When does the body reverse direction?
 - b) When is the body moving at a constant speed?
 - c) What is the body's maximum speed?

- d) At what time interval(s) is the body slowing down?

Unit 4 Corrective Assignment – Answers

1. $s'(6) = 210 \text{ meters / sec}$ $s''(6) = 72 \text{ meters / sec}^2$	2. $\frac{2}{9}$	314	4. Does not exist	5a. $t = 3.5$ and $t = 8$ 5b. $(6,7)$ 5c. 3 meters / sec 5d. $(2,3.5)$, $(5,6)$ and $(7,8)$
6. Setup: $\tan \theta = \frac{1}{2000}s$ Answer: 0.0689 radians per second		7. B	8a. $y = -x + 2$ 8b. $f(-0.1) \approx 2.1$ 8c. Overestimate because $f(x)$ is concave down.	