Name:
Date: \qquad

Unit 4 CA - Contextual Application of Differentiation

1. The position of a particle moving along a coordinate line is $s(t)=2 t^{3}-6 t$, with s in meters and t in seconds. Find the particle's velocity and acceleration at $t=6$.

Find the following. Use L'Hospital's when possible.
2. $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos (3 x)}$
3. $\lim _{x \rightarrow 4} \frac{x^{2}+6 x-40}{4-x}$
4. $\lim _{x \rightarrow 3} \frac{x^{2}-2 x+1}{x-3}$
5. The figure shows the velocity v of a body moving along a coordinate line in meters per second.
a) When does the body reverse direction?
b) When is the body moving at a constant speed?
c) What is the body's maximum speed?

d) At what time interval(s) is the body slowing down?
6. A rocket lifts off at the Kennedy Space Center in Florida. A camera is placed 2000 feet away from the launch pad to film the rocket's ascent. The height of the rocket can be found using $s(t)=50 t^{2}$, where s is feet and t is seconds. Find the rate of change in the angle of elevation of the camera at 10 seconds after lift-off.
7. Two roads cross at right angles, one running north/south and the other east/west. Eighty feet south of the intersection is an old radio tower. A car traveling at 50 feet per second passes through the intersection heading east. At how many feet per second is the car moving away from the radio tower 3 seconds after it passes through the intersection?
(A) 43.65
(B) 44.12
(C) 44.59
(D) 56.67
(E) 81.76
8. The function $f(x)=-x e^{x}+2$ is concave down at $x=0$.
a. Find the tangent line of f at $x=0$.
b. What is the estimate for $f(-0.1)$ using the local linear approximation for f at $x=0$?
c. Is it an underestimate or overestimate? Explain.

Unit 4 Corrective Assignment - Answers

1. $s^{\prime}(6)=210$ meters $/ \mathrm{sec}$ $s^{\prime \prime}(6)=72$ meters $/ \mathrm{sec}^{2}$	2. $\frac{2}{9}$	3. -14	4. Does not exist	5a. $t=3.5$ and $t=8$ 5b. $(6,7)$ 5c. 3 meters / sec 5d. $(2,3.5),(5,6)$ and $(7,8)$
6. Setup: $\tan \theta=\frac{1}{2000} s$ Answer: 0.0689 radians p		7. B	8a. $y=-x+2$ 8b. $f(-0.1) \approx 2.1$ 8c. Overestimate because $f(x)$ is concave down.	

