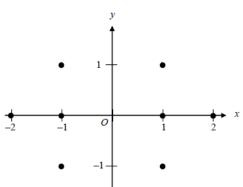
Name:

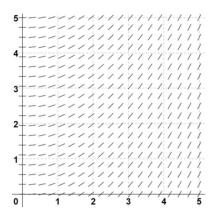

Period:

Review

Unit 7 Review – Differential Equations

Reviews do NOT cover all material from the lessons but will hopefully remind you of key points. To be prepared, you must study all packets from Unit 7.

- 1. Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x}$, where $x \neq 0$.
 - a. On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.
 - b. Find the particular solution y = f(x) to the differential equation with the initial condition f(1) = -1.


- c. Write an equation for the tangent line to the curve y = f(x) through the point (1, -1). Then use your tangent line equation to estimate the value of f(1.2).
- 2. The rate of change of the volume, V(t), of water in a swimming pool is directly proportional to the cube root of the volume. If V = 27 ft³ when $\frac{dV}{dt} = 5$, what is a differential equation that models this situation?

Find the general solution of the differential equation.	
3. $\frac{dy}{dx} = \frac{2x}{y}$	$4. \frac{dy}{dx} = x(y+4)$
	ux .

For each differential equation, find the particular solution that passes through the given point.	
5. $\frac{dy}{dx} = \frac{18}{6x+3} + \frac{4}{x^3}; \left(-\frac{1}{3}, -15\right)$	6. $\frac{dy}{dx} = 2y$ and $y = -0.2$ when $x = 0$

7. A population y grows according to the equation $\frac{dy}{dt} = ky$, where k is a constant and t is measured in years. If the population doubles every 12 years, then what is the value of k?

8. Explain why the following slope field cannot represent the differential equation $\frac{dy}{dt} = 0.4y$

9. For what value of k, if any, will $y = k \cos(2x) + 3 \sin(4x)$ be a solution to the differential equation $y'' + 16y = -6 \cos(2x)$?