Name:
Date: \qquad

Unit 9 CA - Parametric Equations, Polar Coordinates, and VectorValued Functions

1. What is the length of the curved defined by the parametric equations $x(t)=9 \cos t$ and $y(t)=9 \sin t$ for the interval $0 \leq t \leq 2 \pi$?
2. Calculator active. Find the area of the region inside the circle $r=1$ and outside the cardiod $r=1-\cos \theta$.
3. If $x(t)=2 t^{3}$ and $y(t)=t^{3}-t$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of t ?
4. The position of a remote-controlled vehicle moving along a flat surface at time t is given by $(x(t), y(t))$, with velocity vector $v(t)=\left\langle 3 t^{2}, 2 t\right\rangle$ for $0 \leq t \leq 3$. Both $x(t)$ and $y(t)$ are measured in meters, and time t is in seconds. When $t=0$, the remote-controlled vehicle is at the point $(1,2)$.
a. Find the acceleration vector of the remote-controlled vehicle when $t=2$.
b. Find the position of the remote-controlled vehicle when $t=3$.
5. Which of the following gives the length of the path described by the parametric equations $x=2 e^{3 t}$ and $y=3 t^{2}+t$ from $0 \leq t \leq 1$?
A. $\int_{0}^{1} \sqrt{12 e^{6 t}+(6 t+1)^{2}} d t$
B. $\int_{0}^{1} \sqrt{4 e^{6 t}+(6 t+1)^{2}} d t$
C. $\int_{0}^{1} \sqrt{4 e^{6 t}+9 t^{4}+t^{2}} d t$
D. $\int_{0}^{1} \sqrt{36 e^{6 t}+(6 t+1)^{2}} d t$
6. Calculator active. A polar curve is given by $r=\frac{5}{3-\sin \theta}$. What angle θ corresponds on the curve with a y coordinate of -1 ?
7. If f is a vector-valued function defined by $\left\langle t e^{t}, 2 t^{2} e^{t}\right\rangle$ then $f^{\prime \prime}(1)=$?
8. Calculator active. Find the area of the region common to the two regions bounded by the curves $r=6 \cos \theta$ and $r=2+2 \cos \theta$.
9. Find the vector-valued function $f(t)$ that satisfies the initial conditions $f(0)=\langle 3,0\rangle$, and $f^{\prime}(t)=\left\langle 4 \sin \frac{t}{2},-2 \cos 2 t\right\rangle$.
10. If $x=7 \cos \theta$ and $y=7 \sin \theta$, find the slope and the concavity at $\theta=\frac{\pi}{4}$.
11. Calculator active. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle 9 t^{2}, e^{t}\right\rangle$. If the particle is at point $(3,4)$ at time $t=0$, how far is the particle from the origin at time $t=2$?
12. Find the slope of the tangent line to the polar curve $r=2 \cos \theta-1$ at the point where $\theta=\frac{3 \pi}{2}$.
13. Find the slope of the tangent line to the curve defined parametrically by $x(t)=2 \cos t$ and $y(t)=3 \sin ^{2} t$ at $t=\frac{\pi}{3}$.
14. Calculator active. The graph shows the polar curve $r=3-\theta$ for $0 \leq \theta \leq \pi$. What is the area of the region bounded by the curve and the x-axis?

15. At time $t, 0 \leq t \leq 2 \pi$, the position of a particle moving along a path in the $x y$-plane is given by the vectorvalued function, $f(t)=\langle\cos 2 t, \sin 4 t\rangle$. Find the slope of the path of the particle at time $t=\frac{\pi}{4}$.
16. Find an equation for the line tangent to the curve given by the parametric equations $x(t)=t^{2}+1$ and $y(t)=t^{3}+t+1$, when $t=2$.
17. Calculator active. Find the total area enclose by the inner loop of the polar curve $r=4-5 \sin \theta$, shown in the figure.

Answers to Unit 9 Corrective Assignment

| 1. 18π | 2. 1.215 or $2-\frac{\pi}{4}$ | 3. $\frac{1}{18} t^{-5}$ | $4 \mathrm{a} .\langle 12,2\rangle$
 $4 \mathrm{~b} .\langle 28,11\rangle$ | 5. D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6. $\theta=5.435$ or $\theta=3.990$ | 7. $\langle 3 e, 14 e\rangle$ | 8. 15.708 or 5π | 9. $\left\langle-8 \cos \frac{t}{2}+11,-\sin 2 t\right\rangle$ | |
| 10. Slope: -1, Concave Down | 11. 28.930 | 12. 2 | 13. $\frac{d y}{d x}=-\frac{3}{2}$ | |
| 14. 4.500 | 15. 2 | 16. $y=\frac{13}{4} x-\frac{21}{4}$ | 17.0 .340 | |

