Name:
Date:

End-of-Unit 8 CA - Applications of Integration

1. Find the positive number(s) b such that the average value of $y=2+7 x-x^{3}$ on the interval $[0, b]$ is equal to 2 .
2. A particle moves along the x-axis with a velocity of $v(t)=1-\sin t$. At $t=\pi$ seconds the position of the particle is π inches. What is the position of the particle at $t=\frac{3 \pi}{2}$?
3. Calculator active. Revolve the region bounded by the graphs of $y=x^{2}, x=3$, and $y=0$ about the line $x=3$. Find the volume of the solid.
4. Calculator active. Revolve the region bounded by the graphs of $y=2-x^{2}$ and $y=-2$ about the line $y=-2$. Find the volume of the solid.
5. Calculator active. What is the area of the region in the first quadrant enclosed by the graphs of $y=2-x^{2}$, $y=3 \sin x$, and the y-axis?
(A) 0.591
(B) 0.604
(C) 0.982
(D) 1.281
(E) 1.924
6. Find an integral that represents the length of the curve $y=\frac{1}{x^{2}}$ from $x=1$ to $x=3$. Do Not Evaluate.
7. Calculator active. A storm has washed away sand from a beach, causing the edge of the water to get closer to a nearby road. The rate at which the distance between the road and the edge of the water was changing during the storm is modeled by $r(t)=e^{-\sin t}$ feet per hour, t hours after the storm began. The edge of the water was 100 feet from the road when the storm began. If the storm lasted 3 hours, how far is the water from the road after the storm?
8. If the region enclosed by the y-axis, the line $y=2$, and the curve $y=\sqrt[3]{x}$ is revolved about the y-axis, the volume of the solid generated is
(A) π
(B) 4π
(C) 8π
(D) $\frac{64 \pi}{7}$
(E) $\frac{128 \pi}{7}$
9. Find the arc length for $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ for $x=0$ to $x=4$.

10. Calculator active.

Let f and g be the functions given by $f(x)=3 x(2-x)$ and $g(x)=2(x-2) \sqrt{x}$. The graphs of f and g are shown in the figure above.
a. Find the area of the shaded region enclosed by the graphs of f and g.
b. Find the volume of the solid generated when the shaded region enclosed by the graphs of f and g is revolved about the horizontal line $y=3$.
c. Let h be the function given by $h(x)=k x(2-x)$ for $0 \leq x \leq 2$. For each $k>0$, the region (not shown) enclosed by the graphs of h and g is the base of a solid with square cross sections perpendicular to the x axis. There is a value k for which the volume of this solid is equal to 20 . Write, but do not solve, an equation involving an integral expression that could be used to find the value of k.

11. Calculator active.

Let R be the region bounded by the graphs of $y=x-1$ and $y=-(x-1)^{2}+2$, as shown in the figure above.
a. Find the area of R.
b. The horizontal line $y=\frac{3}{2}$ splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part R that is above this horizontal line. Do this with respect to x, not respect to y, even though respect to y is much easier.
c. The region R is the base of a solid. For this solid, each cross section perpendicular to the y-axis is a square. Find the volume of this solid.
d. The region R models the surface of a small pond. At all points in R at a distance y from the x-axis, the depth of water is given by $d(x)=2-x$. Find the volume of water in the pond.

Answers to End-of-Unit 8 Corrective Assignment

