Name:
Date: \qquad

Unit 7 CA - Differential Equations (BC)

1. The rate at which a project $p(x)$ is completed is proportional to the square root of the number of employees x working on the project, where p is measured as a percent of the project that has been completed. If 5 people can complete the project at a rate of 3% per day, what is a differential equation that models this situation?

Find the general solution of the differential equation.

2. $\frac{d y}{d x}=(x+7) y$
3. $\frac{d y}{d x}=-x y^{3}$
4. A population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 14 years, then what is the value of k ?
5. A dose of 500 milligrams of a drug is administered to a patient. The amount of the drug, in milligrams, in the person's bloodstream at time t, in hours, is given by $A(t)$. The rate at which the drug leaves the bloodstream can be modeled by the differential equation $\frac{d A}{d t}=-0.8 A$. Write an expression for $A(t)$.
6. Consider the differential equation $\frac{d y}{d x}=(1-2 x) y$. If $y=10$ when $x=1$, find an equation for y.
(A) $y=e^{x-x^{2}}$
(B) $y=10+e^{x-x^{2}}$
(C) $y=e^{x-x^{2}+10}$
(D) $y=10 e^{x-x^{2}}$
(E) $y=x-x^{2}+10$
7. The solution to the differential equation $\frac{d y}{d x}=\frac{x}{\cos y}$ with the initial condition $y(1)=0$ is
(A) $y=\sin ^{-1}\left(\frac{x^{2}-1}{2}\right)$
(B) $y=\sin ^{-1}\left(\frac{x^{2}}{2}\right)$
(C) $y=\cos ^{-1}\left(x^{2}-1\right)$
(D) $y=\ln [\cos (x-1)]$
(E) $y=\ln (\sin x)$
8. If $\frac{d y}{d x}=\frac{3 x^{2}+2}{y}$ and $y=4$ when $x=2$, then when $x=3, y=$
(A) 18
(B) $\pm \sqrt{66}$
(C) 58
(D) $\pm \sqrt{74}$
(E) $\pm \sqrt{58}$

For each differential equation, find the particular solution that passes through the given point.
9. $\frac{d y}{d x}=9 e^{3 x}-\cos x ;(0,2)$
10. $\frac{d y}{d x}=4 y$ and $y=8$ when $x=0$
11. $\frac{d^{2} y}{d x^{2}}=\cos (2 x)+1$ and $y^{\prime}(\pi)=0$ and $y(0)=1$
12. For what value of k, if any, is $y=e^{3 x}+k e^{-4 x}$ a solution to the differential equation $y^{\prime \prime}-3 y^{\prime}=7 e^{-4 x}$?
13. The table below gives the values of f^{\prime}, the derivative of f. If $f(1.3)=1.7$, what is the approximation to $f(2.2)$ obtained by using Euler's method with 3 steps of equal size?

\boldsymbol{x}	1.3	1.6	1.9	2.2
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	0.1	0.3	0.6	1.1

14. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=2 y-x$ with initial condition $f(1)=3$. What is the approximation for $f(2)$ obtained using Euler's method with 2 steps of equal length, starting at $x=1$?
15. A populations rate of growth is modeled by the logistic differential equation $\frac{d P}{d t}=\frac{1}{1000} P(500-P)$, where t is in weeks and $P(0)=10$. What is the greatest rate of change for this population?
16. Using the logistic differential equation $\frac{d P}{d t}=0.2 P-0.001 P^{2}$, identify the carrying capacity.
17. Explain why the following slope field cannot represent the differential equation $\frac{d y}{d t}=0.4 y$
18.

(A) $\frac{d y}{d x}=y-2 x$
(D) $\frac{d y}{d x}=x y^{2}$
(B) $\frac{d y}{d x}=1+x+y$
(E) $\frac{d y}{d x}=(x-1) y^{2}$
(C) $\frac{d y}{d x}=(1-x)(y-2)$

Answers to Unit 7 Corrective Assignment (BC)

1. $\frac{d p}{d x}=1.3416 \sqrt{x}$	2. $y=C e^{\frac{1}{2} x^{2}+7 x}$		3. $y= \pm \sqrt{\frac{1}{x^{2}+C}}$	4. $k \approx 0.0495$	5. $A(t)=500 e^{-0.8 t}$$\text { 10. } y=8 e^{4 x}$			
6. D	7. A	8.	E $\quad 9$.	9. $y=3 e^{3 x}-\sin x-1$				
11. $y=-\frac{1}{4} \cos (2 x)+\frac{1}{2} x^{2}-\pi x+\frac{5}{4}$			12. $k=\frac{1}{4}$	13. $f(2.2)=2$				14. $f(2.0) \approx 10.25$
15. $62.5 /$ week	16. 200		17. $\frac{d y}{d x}>0$ when $y>0$, but the slope field shows line segments with negative slope.			18. C		

