\qquad
\qquad

Unit 7: Approximation Methods

Riemann Sums = Estimation of area under the curve. You need to be able to do left, right, and midpoint using rectangles, usually involves a table.

Trapezoidal Approximation = same as Riemann's but use trapezoids

MULTIPLE CHOICE

1. The graph shows which of the following?
(A) Left hand Riemann Sum with 5 subintervals
(B) Right hand Riemann Sum with 5 subintervals
(C) Midpoint Riemann Sum with 5 subintervals
(D) Trapezoidal Approximation with 5 subintervals
(E) None of the above

FREE RESPONSE

2. Use a left-hand Riemann sum with 4 subintervals to approximate the integral based of the values in the table.

$$
\int_{0}^{10} f(x) d x
$$

\boldsymbol{x}	0	4	6	7	10
$\boldsymbol{f}(\boldsymbol{x})$	3	2	4	5	7

Unit 8: Integration

Integrals are the area under the curve
Indefinite Integrals = are evaluated using antidifferentiation, don't forget C , you can find C if they give you a point on the original curve. $\int f(x) d x$

Definite Integrals $=$ are evaluated using the Fundamental Theorem of Calculus, geometry, or the calculator.

$$
\int_{a}^{b} f(x) d x
$$

When looking for a total area, use absolute values!

Review the properties of definite integrals.

Evaluate the indefinite integrals.
3. $\int\left(\frac{x^{3}}{4}+\sqrt{x}\right) d x$
4. $\int 3 x^{-1} d x$
5. $\int\left(e^{x}-\sin x\right) d x$

Evaluate the definite integrals using Fundamental Theorm of Calculus.

6.

$$
\int_{-4}^{-2}\left(-\frac{x^{2}}{2}-3 x-\frac{7}{2}\right) d x
$$

7.

$$
\int_{1}^{3}\left(\frac{x^{3}-x}{3 x}\right) d x
$$

Answer the following.

8. Given that $f^{\prime}(x)=\frac{1}{2} x^{2}+\frac{3}{4} x$ and $f(1)=2$. Find $f(x)$.
9. A particle moves along a coordinate line. Its accelartion function is $a(t)=6 t-22$ for $t \geq 0$. If $v(0)=24$ find the velocity at $t=4$.

TEST PREP

NO CALCULATOR

1. $\int \frac{1}{x^{2}} d x=$
(A) $\ln x^{2}+C$
(B) $-\ln x^{2}+C$
(C) $x^{-1}+C$
(D) $-x^{-1}+C$
(E) $-2 x^{-3}+C$
2. The graph of function f is shown below for $0 \leq x \leq 3$. Of the following, which has the least value?
(A) $\int_{1}^{3} f(x) d x$
(B) Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(C) Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal lengtt

(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
3. $\int_{0}^{\frac{\pi}{4}} \sin x d x$
(A) $-\frac{\sqrt{2}}{2}$
(B) $\frac{\sqrt{2}}{2}$
(C) $-\frac{\sqrt{2}}{2}-1$
(D) $-\frac{\sqrt{2}}{2}+1$
(E) $\frac{\sqrt{2}}{2}+1$

CALCULATOR ACTIVE

4. If $\int_{-5}^{2} f(x) d x=-17$ and $\int_{5}^{2} f(x) d x=4$, what is the value of $\int_{-5}^{5} f(x) d x$?
(A) -21
(B) -13
(C) 0
(D) 13
(E) 21

CALCULATOR ACTIVE

5. The rate of change of the altitude of a hot-air balloon is given by $r(t)=t^{3}-4 t^{2}+6$ for $0 \leq t \leq 8$. Which of the following expressions gives the change in altitude of the balloon during the time the altitude is decreasing?
(A) $\int_{1.572}^{3.514} r(t) d t$
(B) $\int_{0}^{8} r(t) d t 0$
(C) $\int_{0}^{2.667} r(t) d t$
(D) $\int_{1.572}^{3.514} r^{\prime}(t) d t$
(E) $\int_{0}^{2.667} r^{\prime}(t) d t$
6. If a trapezoidal sum overapproximates $\int_{0}^{4} f(x) d x$, and a right Riemann sum underapproximates $\int_{0}^{4} f(x) d x$, which of the following could be the graph of $y=f(x)$?
(A)

(B)

(C)

(D)

(E)

FREE RESPONSE
 CALCULATOR ACTIVE

t (minutes)	0	2	5	9	10
$H(t)$ (degrees Celsisus)	66	60	52	44	43

7. As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 10$, where time t is measure in minutes and temperature $H(t)$ is measured in degrees Celsius. Values of $H(t)$ at selected values of time t are shown in the table above.
(a) Use a trapezoidal sum with four subintervals indicated by the table to estimate $\int_{0}^{10} H(t) d t$.
(b) Using correct units, explain the meaning of $H^{\prime}(7)$. Use the table to approximate $H^{\prime}(7)$. Show your calculations.
