UNIT 7 & 8 Basic Integration

Ľ
İ

REVIEW

DATE:_____

Unit 7: Approximation Methods

Riemann Sums = Estimation of area under the curve. You need to be able to do left, right, and midpoint using rectangles, usually involves a table.

Trapezoidal Approximation = same as Riemann's but use trapezoids

MULTIPLE CHOICE

- 1. The graph shows which of the following?
 - (A) Left hand Riemann Sum with 5 subintervals
 - (B) Right hand Riemann Sum with 5 subintervals
 - (C) Midpoint Riemann Sum with 5 subintervals
 - (D) Trapezoidal Approximation with 5 subintervals
 - (E) None of the above

FREE RESPONSE

2. Use a left-hand Riemann sum with 4 subintervals to approximate the integral based of the values in the table.

10 C							
f(x)dx	x	0	4	6	7	10	
<i>J</i> 0	f(x)	3	2	4	5	7	

Unit 8: Integration

Integrals are the area under the curve

Indefinite Integrals = are evaluated using antidifferentiation, don't forget C, you can find C if they give you a point on the original curve. $\int f(x)dx$

Definite Integrals = are evaluated using the Fundamental Theorem of Calculus, geometry, or the calculator.

$$\int_{a}^{b} f(x) dx$$

When looking for a total area, use absolute values!

Review the properties of definite integrals.

Evaluate the definite integrals using Fundamental Theorm of Calculus.

6.

$$\int_{-4}^{-2} \left(-\frac{x^2}{2} - 3x - \frac{7}{2} \right) dx$$
7.

$$\int_{1}^{3} \left(\frac{x^3 - x}{3x} \right) dx$$

Answer the following.

8. Given that $f'(x) = \frac{1}{2}x^2 + \frac{3}{4}x$ and f(1) = 2. Find f(x).

9. A particle moves along a coordinate line. Its accelartion function is a(t) = 6t - 22 for $t \ge 0$. If v(0) = 24 find the velocity at t = 4.

TEST PREP NO CALCULATOR

- 1. $\int \frac{1}{x^2} dx =$
 - (A) $\ln x^2 + C$
 - (B) $-\ln x^2 + C$
 - (C) $x^{-1} + C$ (D) $-x^{-1} + C$
 - (D) -x + c(E) $-2x^{-3} + c$
- 2. The graph of function *f* is shown below for $0 \le x \le 3$. Of the following, which has the least value?
 - (A) $\int_1^3 f(x) dx$
 - (B) Left Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length
 - (C) Right Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length
 - (D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length

Graph of f

(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length

$$3. \int_{0}^{\frac{\pi}{4}} \sin x \, dx$$

(A)
$$-\frac{\sqrt{2}}{2}$$

(B) $\frac{\sqrt{2}}{2}$
(C) $-\frac{\sqrt{2}}{2} - 1$
(D) $-\frac{\sqrt{2}}{2} + 1$
(E) $\frac{\sqrt{2}}{2} + 1$

CALCULATOR ACTIVE

4. If $\int_{-5}^{2} f(x) dx = -17$ and $\int_{5}^{2} f(x) dx = 4$, what is the value of $\int_{-5}^{5} f(x) dx$?

(A) -21 (B) -13 (C) 0 (D) 13 (E) 21

CALCULATOR ACTIVE

- 5. The rate of change of the altitude of a hot-air balloon is given by $r(t) = t^3 4t^2 + 6$ for $0 \le t \le 8$. Which of the following expressions gives the change in altitude of the balloon during the time the altitude is decreasing?
 - (A) $\int_{1.572}^{3.514} r(t) dt$ (B) $\int_{0}^{8} r(t) dt \ 0$ (C) $\int_{0}^{2.667} r(t) dt$ (D) $\int_{1.572}^{3.514} r'(t) dt$ (E) $\int_{0}^{2.667} r'(t) dt$
- 6. If a trapezoidal sum overapproximates $\int_0^4 f(x)dx$, and a right Riemann sum underapproximates $\int_0^4 f(x)dx$, which of the following could be the graph of y = f(x)?

FREE RESPONSE CALCULATOR ACTIVE

t (minutes)	0	2	5	9	10
H(t) (degrees Celsisus)	66	60	52	44	43

- 7. As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \le t \le 10$, where time *t* is measure in minutes and temperature H(t) is measured in degrees Celsius. Values of H(t) at selected values of time t are shown in the table above.
- (a) Use a trapezoidal sum with four subintervals indicated by the table to estimate $\int_0^{10} H(t) dt$.

(b) Using correct units, explain the meaning of H'(7). Use the table to approximate H'(7). Show your calculations.