Name:

Period:

Unit 9 Review – Parametric Equations, Polar Coordinates, and Vector-Valued Functions

Reviews do NOT cover all material from the lessons but will hopefully remind you of key points. To be prepared, you must study all packets from Unit 9.

- 1. A curve is defined parametrically by $x(t) = t^3 3t^2 + 4$ and $y(t) = \sqrt{t^2 + 16}$. What is the equation of the tangent line at the point defined by t = 3?
- 2. An object moves in the xy-plane so that its position at any time t is given by the parametric equations $x(t) = t^2 + 3$ and $y(t) = t^3 + 5t$. What is the rate of change of y with respect to x when t = 1?
- 3. A curve in the xy-plane is defined by (x(t), y(t)), where x(t) = 3t and $y(t) = t^2 + 1$ for $t \ge 0$. What is $\frac{d^2y}{dx^2}$ in terms of t?
 - $\frac{d^{2}y}{dx} = \frac{y'(t)}{x(t)} = \frac{\lambda t}{3} \qquad \qquad \frac{d^{2}y}{dx^{2}} = \frac{y}{x(t)} = \frac{\lambda t}{3} = \frac{\lambda t}{3}$

4. If $x(\theta) = \cot \theta$ and $y(\theta) = \csc \theta$, what is $\frac{d^2 y}{dx^2}$ in terms of θ ?

$$\frac{dy}{dx} = \frac{-5(0)(0+0)}{-5(2+0)} = \frac{(0+0)}{(5(0+0))} = \frac{(0+0)}{5(0+0)} = \frac{(0+0)}{5(0+0)} = \frac{(0+0)}{5(0+0)} = \frac{1}{5(0+0)}$$

5. What is the length of the curve defined by the parametric equations x(t) = 7 + 4t and y(t) = 6 - t for the interval $0 \le t \le 9$?

6. What is the length of the curve defined by the parametric equations $x(\theta) = 3\cos 2\theta$ and $y(\theta) = 3\sin 2\theta$ for the interval $0 \le \theta \le \frac{\pi}{2}$

the interval
$$0 \le \theta \le \frac{\pi}{2}$$
?
 $x' = -65in 20$
 $y' = 6\cos 20$
 $\int_{0}^{12} \sqrt{3}(5in^{2}(20) + 36\cos^{2}(20)) d0$
 $\int_{0}^{12} \sqrt{3}(5in^{2}(20) + 36\cos^{2}(20)) d0$

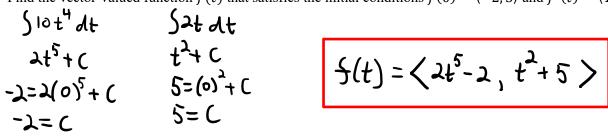
7. If f is a vector-valued function defined by $(2t^3 + 3t^2 + 4t + 1, t^3 - 4t - 1)$ then f''(2) =

8. At time $t, 0 \le t \le 2\pi$, the position of a particle moving along a path in the *xy*-plane is given by the vectorvalued function, $f(t) = \langle e^t \sin 3t, e^t \cos 3t \rangle$. Find the slope of the path of the particle at time $t = \frac{\pi}{6}$.

$$f'(t) = \frac{y'}{x'} = \frac{e^{t}\cos 3t - 3e^{t}\sin 3t}{e^{t}\sin 3t + 3e^{t}\cos 3t} = \frac{\cos(3t) - 3\sin(3t)}{\sin(3t) + 3\cos(3t)}$$

$$f'(\frac{w}{6}) = \frac{\cos(\frac{w}{2}) - 3\sin(\frac{w}{2})}{\sin(\frac{w}{2}) + 3\cos(\frac{w}{2})} = \frac{0 - 3}{1 + 0} = -3$$

9. Find the vector-valued function f(t) that satisfies the initial conditions $f(0) = \langle -2, 5 \rangle$ and $f'(t) = \langle 10t^4, 2t \rangle$.



10. Calculator active: For $t \ge 0$, a particle is moving along a curve so that its position at time t is (x(t), y(t)). At time t = 1 the particle is at position (3, 4). It is known that $\frac{dx}{dt} = \sin 2t$ and $\frac{dy}{dt} = \frac{\sqrt{t}}{e^{2t}}$. Find the y-coordinate of the particles position at time t = 3.

$$y(1) + S_{1}^{3} \frac{\pi}{24} dt$$

 $4 + S_{1}^{3} \frac{\pi}{e^{4}} dt \lesssim 4.0796$

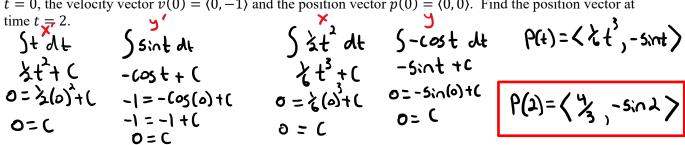
11. A particle moving in the *xy*-plane has position given by parametric equations x(t) = t and $y(t) = 4 - t^2$. A. Find the velocity vector.

B. Find the speed when t = 1.

$$\sqrt{(1)^{2} + (-2(1))^{2}} = \sqrt{5}$$

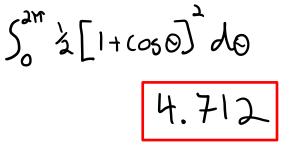
C. Find the acceleration vector.

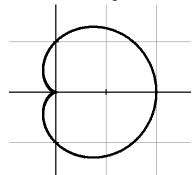
12. It is known the acceleration vector for a particle moving in the xy-plane is given by $a(t) = \langle t, \sin t \rangle$. When t = 0, the velocity vector $v(0) = \langle 0, -1 \rangle$ and the position vector $p(0) = \langle 0, 0 \rangle$. Find the position vector at



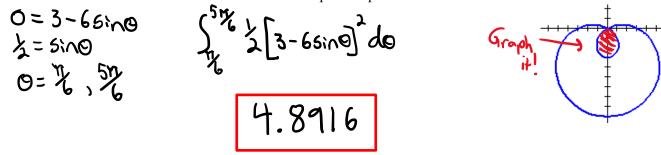
13. Find the slope of the tangent line to the polar curve $r = 2\cos 4\theta$ at the point where $\theta = \frac{\pi}{4}$.

14. Calculator active. For a certain polar curve $r = f(\theta)$, it is known that $\frac{dx}{d\theta} = \cos \theta - \theta \sin \theta$ and $\frac{dy}{d\theta} = \sin \theta + \theta \cos \theta$. What is the value of $\frac{d^2y}{dx^2}$ at $\theta = 6$? $\frac{d^2y}{dx^2} = \frac{4}{(300 - 05)(60)} = \frac{5.46608500}{2.636663276}$ at $\theta = 6 \rightarrow \frac{5.46608500}{2.636663276}$ 2.073 15. Calculator active. Find the total area enclosed by the polar curve $r = 1 + \cos \theta$ shown in the figure above.

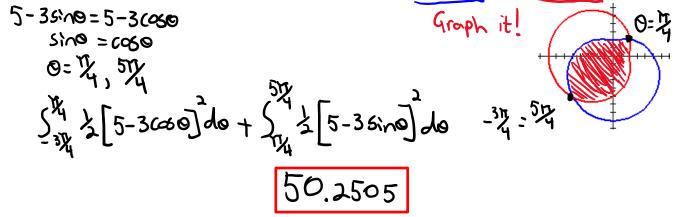




16. Calculator active. Find the area of the inner loop of the polar curve $r = 3 - 6 \sin \theta$.



17. Find the total area of the common interior of the polar graphs $r = 5 - 3 \sin \theta$ and $r = 5 - 3 \cos \theta$.



18. Calculator active. The figure shows the graphs of the polar curves $r = 4 \cos 3\theta$ and r = 4. What is the sum of the areas of the shaded regions?

